Skip to main content

2020 | OriginalPaper | Buchkapitel

A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal Hitting Sets

verfasst von : Barış Ekim, Bonnie Berger, Yaron Orenstein

Erschienen in: Research in Computational Molecular Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the volume of next generation sequencing data increases, an urgent need for algorithms to efficiently process the data arises. Universal hitting sets (UHS) were recently introduced as an alternative to the central idea of minimizers in sequence analysis with the hopes that they could more efficiently address common tasks such as computing hash functions for read overlap, sparse suffix arrays, and Bloom filters. A UHS is a set of k-mers that hit every sequence of length L, and can thus serve as indices to L-long sequences. Unfortunately, methods for computing small UHSs are not yet practical for real-world sequencing instances due to their serial and deterministic nature, which leads to long runtimes and high memory demands when handling typical values of k (e.g. \(k > 13\)). To address this bottleneck, we present two algorithmic innovations to significantly decrease runtime while keeping memory usage low: (i) we leverage advanced theoretical and architectural techniques to parallelize and decrease memory usage in calculating k-mer hitting numbers; and (ii) we build upon techniques from randomized Set Cover to select universal k-mers much faster. We implemented these innovations in PASHA, the first randomized parallel algorithm for generating near-optimal UHSs, which newly handles \(k > 13\). We demonstrate empirically that PASHA produces sets only slightly larger than those of serial deterministic algorithms; moreover, the set size is provably guaranteed to be within a small constant factor of the optimal size. PASHA’s runtime and memory-usage improvements are orders of magnitude faster than the current best algorithms. We expect our newly-practical construction of UHSs to be adopted in many high-throughput sequence analysis pipelines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Berger, B., Peng, J., Singh, M.: Computational solutions for omics data. Nat. Rev. Genet. 14(5), 333 (2013)CrossRef Berger, B., Peng, J., Singh, M.: Computational solutions for omics data. Nat. Rev. Genet. 14(5), 333 (2013)CrossRef
2.
Zurück zum Zitat Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)MathSciNetCrossRef Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)MathSciNetCrossRef
3.
Zurück zum Zitat DeBlasio, D., Gbosibo, F., Kingsford, C., Marçais, G.: Practical universal k-mer sets for minimizer schemes. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 167–176. ACM (2019) DeBlasio, D., Gbosibo, F., Kingsford, C., Marçais, G.: Practical universal k-mer sets for minimizer schemes. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 167–176. ACM (2019)
4.
Zurück zum Zitat Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)CrossRef Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)CrossRef
5.
Zurück zum Zitat Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRef Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRef
6.
Zurück zum Zitat Kawulok, J., Deorowicz, S.: CoMeta: classification of metagenomes using k-mers. PLoS ONE 10(4), e0121453 (2015)CrossRef Kawulok, J., Deorowicz, S.: CoMeta: classification of metagenomes using k-mers. PLoS ONE 10(4), e0121453 (2015)CrossRef
7.
Zurück zum Zitat Kucherov, G.: Evolution of biosequence search algorithms: a brief survey. Bioinformatics 35(19), 3547–3552 (2019)CrossRef Kucherov, G.: Evolution of biosequence search algorithms: a brief survey. Bioinformatics 35(19), 3547–3552 (2019)CrossRef
8.
Zurück zum Zitat Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.N.S.D.: The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2010)CrossRef Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.N.S.D.: The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2010)CrossRef
9.
10.
Zurück zum Zitat Marçais, G., DeBlasio, D., Kingsford, C.: Asymptotically optimal minimizers schemes. Bioinformatics 34(13), i13–i22 (2018)CrossRef Marçais, G., DeBlasio, D., Kingsford, C.: Asymptotically optimal minimizers schemes. Bioinformatics 34(13), i13–i22 (2018)CrossRef
11.
Zurück zum Zitat Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kingsford, C.: Improving the performance of minimizers and winnowing schemes. Bioinformatics 33(14), i110–i117 (2017)CrossRef Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kingsford, C.: Improving the performance of minimizers and winnowing schemes. Bioinformatics 33(14), i110–i117 (2017)CrossRef
12.
Zurück zum Zitat Marçais, G., Solomon, B., Patro, R., Kingsford, C.: Sketching and sublinear data structures in genomics. Ann. Rev. Biomed. Data Sci. 2, 93–118 (2019) Marçais, G., Solomon, B., Patro, R., Kingsford, C.: Sketching and sublinear data structures in genomics. Ann. Rev. Biomed. Data Sci. 2, 93–118 (2019)
13.
Zurück zum Zitat Mykkeltveit, J.: A proof of Golomb’s conjecture for the de Bruijn graph. J. Comb. Theory 13(1), 40–45 (1972)MathSciNetCrossRef Mykkeltveit, J.: A proof of Golomb’s conjecture for the de Bruijn graph. J. Comb. Theory 13(1), 40–45 (1972)MathSciNetCrossRef
15.
Zurück zum Zitat Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.: Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing. PLoS Comput. Biol. 13(10), e1005777 (2017)CrossRef Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.: Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing. PLoS Comput. Biol. 13(10), e1005777 (2017)CrossRef
17.
Zurück zum Zitat Qin, J., et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59 (2010)CrossRef Qin, J., et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59 (2010)CrossRef
18.
Zurück zum Zitat Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369 (2004)CrossRef Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369 (2004)CrossRef
19.
Zurück zum Zitat Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., Gordon, J.I.: The human microbiome project. Nature 449(7164), 804 (2007)CrossRef Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., Gordon, J.I.: The human microbiome project. Nature 449(7164), 804 (2007)CrossRef
20.
Zurück zum Zitat Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Douglas, W.Y.: Exploiting sparseness in de novo genome assembly. BMC Bioinform. 13(6), S1 (2012)CrossRef Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Douglas, W.Y.: Exploiting sparseness in de novo genome assembly. BMC Bioinform. 13(6), S1 (2012)CrossRef
Metadaten
Titel
A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal Hitting Sets
verfasst von
Barış Ekim
Bonnie Berger
Yaron Orenstein
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-45257-5_3