Skip to main content
Erschienen in: Measurement Techniques 6/2018

11.10.2018 | OPTOPHYSICAL MEASUREMENTS

A Refraction Method of Measurement of the Rate of Evaporation of a Liquid Droplet Under Conditions of Pinning of a Contact Line

verfasst von: I. N. Pavlov, I. L. Raskovskaya, S. P. Yurkevichyus

Erschienen in: Measurement Techniques | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A laser refraction method of measurement of the rate of evaporation of a liquid droplet on a horizontal substrate under the conditions of pinning of a contact line is developed. Experimental values of the contact wetting angle in the evaporation process are obtained with the use of refraction images of the droplet. The time dependence of the volume of an evaporated droplet is established based on these values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. S. Rinkevichyus, M. V. Esin, I. L. Raskovskaya, and A. V. Tolkachev, Patent 105433 RF, “A method of visualization and measurement of the parameters of physical processes in liquid media,” Izobret. Polezn. Modeli (2010). B. S. Rinkevichyus, M. V. Esin, I. L. Raskovskaya, and A. V. Tolkachev, Patent 105433 RF, “A method of visualization and measurement of the parameters of physical processes in liquid media,” Izobret. Polezn. Modeli (2010).
2.
Zurück zum Zitat V. T. Nguen, I. L. Raskovskaya, and B. S. Rinkevichyus, “Algorithms and error in quantitative diagnostics of optical irregularities by means of laser refractography,” Izmer. Tekhn., 83, No. 4, 24–28 (2009). V. T. Nguen, I. L. Raskovskaya, and B. S. Rinkevichyus, “Algorithms and error in quantitative diagnostics of optical irregularities by means of laser refractography,” Izmer. Tekhn., 83, No. 4, 24–28 (2009).
3.
Zurück zum Zitat I. L. Raskovskaya, “Laser refraction tomography of phase objects,” Kvant. Elektron., 43, No. 6, 554–562 (2013).ADSCrossRef I. L. Raskovskaya, “Laser refraction tomography of phase objects,” Kvant. Elektron., 43, No. 6, 554–562 (2013).ADSCrossRef
4.
Zurück zum Zitat S. P. Yurkevichyus and B. S. Rinkevichyus, “Development of new optical methods for the study of flows of liquids and gas at the Fabricant Department of Physics, MPEI,” Innov. Ekspert., Iss. 2 (15), 288–292 (2015). S. P. Yurkevichyus and B. S. Rinkevichyus, “Development of new optical methods for the study of flows of liquids and gas at the Fabricant Department of Physics, MPEI,” Innov. Ekspert., Iss. 2 (15), 288–292 (2015).
5.
Zurück zum Zitat H. K. Dhavaleswarapu, C. P. Migliaccio, S.V. Garimella, and J. Y. Murthy, “Experimental investigation of evaporation from low-contact-angle sessile droplets,” Langmuir, 26, Iss. 2, 880–888 (2010).CrossRef H. K. Dhavaleswarapu, C. P. Migliaccio, S.V. Garimella, and J. Y. Murthy, “Experimental investigation of evaporation from low-contact-angle sessile droplets,” Langmuir, 26, Iss. 2, 880–888 (2010).CrossRef
6.
Zurück zum Zitat A. A. Gunay, S. Sett, J. Oh, and N. Miljkovich, “Steady method for the analysis of evaporation dynamics,” Langmuir, 33, Iss. 43, 12007–12015 (2017).CrossRef A. A. Gunay, S. Sett, J. Oh, and N. Miljkovich, “Steady method for the analysis of evaporation dynamics,” Langmuir, 33, Iss. 43, 12007–12015 (2017).CrossRef
7.
Zurück zum Zitat V. I. Saverchenko, S. P. Fisenko, and Yu. A. Khodyko, “Kinetics of picoliter binary droplet evaporation on a substrate at reduced pressure,” Colloid J., 77, No. 1, 71–76 (2015).CrossRef V. I. Saverchenko, S. P. Fisenko, and Yu. A. Khodyko, “Kinetics of picoliter binary droplet evaporation on a substrate at reduced pressure,” Colloid J., 77, No. 1, 71–76 (2015).CrossRef
8.
Zurück zum Zitat R. Bhardwaj, J. P. Longtin, and D. Attinger, “Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface,” Int. J. Heat Mass Transf., 53, 3733–3744 (2010).CrossRef R. Bhardwaj, J. P. Longtin, and D. Attinger, “Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface,” Int. J. Heat Mass Transf., 53, 3733–3744 (2010).CrossRef
9.
Zurück zum Zitat K. M. Schweigler, M. Ben Said, S. Seifritz, et al., “Experimental and numerical investigation of drop evaportation depending on the shape of the liquid/gas interface,” Int. J. Heat Mass Transf., 105, 655–663 (2017).CrossRef K. M. Schweigler, M. Ben Said, S. Seifritz, et al., “Experimental and numerical investigation of drop evaportation depending on the shape of the liquid/gas interface,” Int. J. Heat Mass Transf., 105, 655–663 (2017).CrossRef
10.
Zurück zum Zitat Yu. Yu. Tarasevich, “Mechanisms and models of dehydration self-organization of biological liquids,” Usp. Fiz. Nauk, 174, No. 7, 779 –789 (2004).CrossRef Yu. Yu. Tarasevich, “Mechanisms and models of dehydration self-organization of biological liquids,” Usp. Fiz. Nauk, 174, No. 7, 779 –789 (2004).CrossRef
11.
Zurück zum Zitat T. A. Yakhno and V. G. Yakhno, “Foundations of structural evolution of desiccating droplets of biological liquids,” Zh. Tekh. Fiz., 79, Iss. 8, 133–141 (2009). T. A. Yakhno and V. G. Yakhno, “Foundations of structural evolution of desiccating droplets of biological liquids,” Zh. Tekh. Fiz., 79, Iss. 8, 133–141 (2009).
12.
Zurück zum Zitat K. O. Vlasov and P. V. Lebedev-Stepanov, “Computer visualization of hydrodynamic flows within an evaporating liquid microdrop,” Nauch. Vizualiz., 2, No. 4, 72–75 (2010). K. O. Vlasov and P. V. Lebedev-Stepanov, “Computer visualization of hydrodynamic flows within an evaporating liquid microdrop,” Nauch. Vizualiz., 2, No. 4, 72–75 (2010).
13.
Zurück zum Zitat L. Yu. Barash, “Dependence of fluid flows in an evaporating sessile droplet on the characteristics of the substrate,” Int. J. Heat Mass Transf., 84, 419–426 (2015).CrossRef L. Yu. Barash, “Dependence of fluid flows in an evaporating sessile droplet on the characteristics of the substrate,” Int. J. Heat Mass Transf., 84, 419–426 (2015).CrossRef
14.
Zurück zum Zitat S. A. Borodin, A. V. Volkov, and N. P. Kazanskii, “A device for the analysis of nano-roughnesses and contamination of a substrate from the dynamic state of a liquid droplet deposited on its surface,” Optich. Zh., 76, No. 7, 42–47 (2009). S. A. Borodin, A. V. Volkov, and N. P. Kazanskii, “A device for the analysis of nano-roughnesses and contamination of a substrate from the dynamic state of a liquid droplet deposited on its surface,” Optich. Zh., 76, No. 7, 42–47 (2009).
15.
Zurück zum Zitat P. S. Vasil’ev, L. S. Reva, S. L. Reva, et al., “Determination of evaporation time of a droplet boiling on a heating surface,” Vest. Tekhnol. Univ., 19, No. 5, 121–126 (2016). P. S. Vasil’ev, L. S. Reva, S. L. Reva, et al., “Determination of evaporation time of a droplet boiling on a heating surface,” Vest. Tekhnol. Univ., 19, No. 5, 121–126 (2016).
16.
Zurück zum Zitat I. N. Pavlov, Raskovskaya, and A. V. Tolkachev, “Structure of the micro-relief of the surface of a droplet evaporating from a rough substrate as one possible cause of hysteresis of the contact angle,” Zh. Eksper. Tekh. Fiz., 151, Iss. 4, 670–681 (2017). I. N. Pavlov, Raskovskaya, and A. V. Tolkachev, “Structure of the micro-relief of the surface of a droplet evaporating from a rough substrate as one possible cause of hysteresis of the contact angle,” Zh. Eksper. Tekh. Fiz., 151, Iss. 4, 670–681 (2017).
17.
Zurück zum Zitat I. N. Pavlov, I. L. Raskovskaya, and B. S. Rinkevichyus, “Establishing the surface profile of a liquid droplet based on layered laser probing,” Pisma Zh. Tekh. Fiz., 43, No. 13, 19–26 (2017). I. N. Pavlov, I. L. Raskovskaya, and B. S. Rinkevichyus, “Establishing the surface profile of a liquid droplet based on layered laser probing,” Pisma Zh. Tekh. Fiz., 43, No. 13, 19–26 (2017).
Metadaten
Titel
A Refraction Method of Measurement of the Rate of Evaporation of a Liquid Droplet Under Conditions of Pinning of a Contact Line
verfasst von
I. N. Pavlov
I. L. Raskovskaya
S. P. Yurkevichyus
Publikationsdatum
11.10.2018
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 6/2018
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1471-9

Weitere Artikel der Ausgabe 6/2018

Measurement Techniques 6/2018 Zur Ausgabe