Skip to main content
Erschienen in: Journal of Materials Science 24/2020

23.04.2020 | Energy materials

A renewable and biodegradable nanocellulose-based gel polymer electrolyte for lithium-ion battery

verfasst von: Jingren Gou, Wangyu Liu, Aimin Tang

Erschienen in: Journal of Materials Science | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymers, such as PVDF and PMMA, have been commonly adopted as host materials for gel polymer electrolytes (GPEs), leading to excessive consumption of fossil fuel as well as severe white pollution. Nanocellulose (NC) is a kind of renewable and biodegradable carbohydrate polymer so that its possible application in gel polymer electrolyte for lithium-ion battery is discussed in this paper. The NC membrane with a porous network is prepared by freeze-drying method. To further extend its application into GPE, glutaraldehyde (GA) is used as cross-link agent to enhance the performance of the membrane. Cross-linked by 6 wt% GA, the skeleton membrane exhibits satisfactory mechanical property and thermal stability. The GPE gives moderate electrochemical performance and reverse capability. The experimental results show that the introduction of nanocellulose provides a direction for the development of carbohydrate polymer applied in GPE.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27 Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27
2.
Zurück zum Zitat Lin C-E, Zhang H, Song Y-Z, Zhang Y, Yuan J-J, Zhu B-K (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6:991–998 Lin C-E, Zhang H, Song Y-Z, Zhang Y, Yuan J-J, Zhu B-K (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6:991–998
3.
Zurück zum Zitat Zhang J, Yue L, Kong Q et al (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4(1):3935 Zhang J, Yue L, Kong Q et al (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4(1):3935
4.
Zurück zum Zitat Panchal S, Mathew M, Fraser R, Fowler M (2018) Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV. Appl Therm Eng 135:123–132 Panchal S, Mathew M, Fraser R, Fowler M (2018) Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV. Appl Therm Eng 135:123–132
5.
Zurück zum Zitat Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M (2017) Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery. Int J Heat Mass Transf 109:1239–1251 Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M (2017) Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery. Int J Heat Mass Transf 109:1239–1251
6.
Zurück zum Zitat Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367 Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367
7.
Zurück zum Zitat Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264 Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264
8.
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem 47:2930–2946 Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem 47:2930–2946
9.
Zurück zum Zitat Schadeck U, Kyrgyzbaev K, Gerdes T, Willert-Porada M, Moos R (2018) Porous and non-porous micrometer-sized glass platelets as separators for lithium-ion batteries. J Membr Sci 550:518–525 Schadeck U, Kyrgyzbaev K, Gerdes T, Willert-Porada M, Moos R (2018) Porous and non-porous micrometer-sized glass platelets as separators for lithium-ion batteries. J Membr Sci 550:518–525
10.
Zurück zum Zitat Zhou Q, Dong S, Lv Z et al (2020) A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv Energy Mater 10(6):1903441 Zhou Q, Dong S, Lv Z et al (2020) A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv Energy Mater 10(6):1903441
11.
Zurück zum Zitat Wang Z, Xiang H, Wang L et al (2018) A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J Membr Sci 553:10–16 Wang Z, Xiang H, Wang L et al (2018) A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J Membr Sci 553:10–16
12.
Zurück zum Zitat Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9 Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9
13.
Zurück zum Zitat Zhang Z, Yuan W, Li L (2018) Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37:91–98 Zhang Z, Yuan W, Li L (2018) Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37:91–98
14.
Zurück zum Zitat Chai J, Liu Z, Ma J et al (2017) In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci 4(2):1600377 Chai J, Liu Z, Ma J et al (2017) In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci 4(2):1600377
15.
Zurück zum Zitat Zhang Y, Lu W, Cong L et al (2019) Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J Power Sources 420:63–72 Zhang Y, Lu W, Cong L et al (2019) Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J Power Sources 420:63–72
16.
Zurück zum Zitat Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143 Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143
17.
Zurück zum Zitat Kim J-K, Manuel J, Lee M-H et al (2012) Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes. J Mater Chem 22:15045–15049 Kim J-K, Manuel J, Lee M-H et al (2012) Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes. J Mater Chem 22:15045–15049
18.
Zurück zum Zitat Kang W, Ma X, Zhao H et al (2016) Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries. J Solid State Electrochem 20:2791–2803 Kang W, Ma X, Zhao H et al (2016) Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries. J Solid State Electrochem 20:2791–2803
19.
Zurück zum Zitat Li G, Li Z, Zhang P, Zhang H, Wu Y (2008) Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl Chem 80:2553–2563 Li G, Li Z, Zhang P, Zhang H, Wu Y (2008) Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl Chem 80:2553–2563
20.
Zurück zum Zitat Yue L, Xie Y, Zheng Y et al (2017) Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos Sci Technol 145:122–131 Yue L, Xie Y, Zheng Y et al (2017) Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos Sci Technol 145:122–131
21.
Zurück zum Zitat Xiao Q, Deng C, Wang Q, Zhang Q, Yue Y, Ren S (2019) In situ cross-linked gel polymer electrolyte membranes with excellent thermal stability for lithium ion batteries. ACS Omega 4:95–103 Xiao Q, Deng C, Wang Q, Zhang Q, Yue Y, Ren S (2019) In situ cross-linked gel polymer electrolyte membranes with excellent thermal stability for lithium ion batteries. ACS Omega 4:95–103
22.
Zurück zum Zitat Xianhua C, Khanmirzaei MH, Omar FS, Kasi R, Subramaniam RT (2018) The effect of incorporation of multi-walled carbon nanotube into poly(ethylene oxide) gel electrolyte on the photovoltaic performance of dye-sensitized solar cell. Polym Plast Technol Mater 58:97–104 Xianhua C, Khanmirzaei MH, Omar FS, Kasi R, Subramaniam RT (2018) The effect of incorporation of multi-walled carbon nanotube into poly(ethylene oxide) gel electrolyte on the photovoltaic performance of dye-sensitized solar cell. Polym Plast Technol Mater 58:97–104
23.
Zurück zum Zitat Liao YH, Li XP, Fu CH et al (2011) Performance improvement of polyethylene-supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano-Al2O3. J Power Sources 196:6723–6728 Liao YH, Li XP, Fu CH et al (2011) Performance improvement of polyethylene-supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano-Al2O3. J Power Sources 196:6723–6728
24.
Zurück zum Zitat Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim Acta 127:327–333 Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim Acta 127:327–333
25.
Zurück zum Zitat Ma Y, Ma J, Chai J et al (2017) Two players make a formidable combination: in-situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte towards 5 V high voltage batteries. ACS Appl Mater Interfaces 9:41462–41472 Ma Y, Ma J, Chai J et al (2017) Two players make a formidable combination: in-situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte towards 5 V high voltage batteries. ACS Appl Mater Interfaces 9:41462–41472
26.
Zurück zum Zitat Terasawa N, Asaka K (2019) High-performance cellulose nanofibers, single-walled carbon nanotubes and ionic liquid actuators with a poly(vinylidene fluoride-co-hexafluoropropylene)/ionic liquid gel electrolyte layer. RSC Adv 9:8215–8221 Terasawa N, Asaka K (2019) High-performance cellulose nanofibers, single-walled carbon nanotubes and ionic liquid actuators with a poly(vinylidene fluoride-co-hexafluoropropylene)/ionic liquid gel electrolyte layer. RSC Adv 9:8215–8221
27.
Zurück zum Zitat Zhang X, Zhao S, Fan W, Wang J, Li C (2019) Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries. Electrochim Acta 301:304–311 Zhang X, Zhao S, Fan W, Wang J, Li C (2019) Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries. Electrochim Acta 301:304–311
28.
Zurück zum Zitat Chotsuwan C, Boonrungsiman S, Asawapirom U et al (2018) Highly viscous composite gel electrolyte based on cellulose acetate and nanoparticles. J Electroanal Chem 828:91–96 Chotsuwan C, Boonrungsiman S, Asawapirom U et al (2018) Highly viscous composite gel electrolyte based on cellulose acetate and nanoparticles. J Electroanal Chem 828:91–96
29.
Zurück zum Zitat Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118 Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118
30.
Zurück zum Zitat Zhang MY, Li MX, Chang Z et al (2017) A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim Acta 245:752–759 Zhang MY, Li MX, Chang Z et al (2017) A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim Acta 245:752–759
31.
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491 Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491
32.
Zurück zum Zitat Mahmoud ME, Abdou AEH, Sobhy ME, Fekry NA (2017) Solid-solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water. Int J Biol Macromol 105:1269–1278 Mahmoud ME, Abdou AEH, Sobhy ME, Fekry NA (2017) Solid-solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water. Int J Biol Macromol 105:1269–1278
33.
Zurück zum Zitat Suto S, Ui N (1996) Chemical crosslinking of hydroxypropyl cellulose and chitosan blends. J Appl Polym Sci 61:2273–2278 Suto S, Ui N (1996) Chemical crosslinking of hydroxypropyl cellulose and chitosan blends. J Appl Polym Sci 61:2273–2278
34.
Zurück zum Zitat Du Z, Su Y, Qu Y et al (2019) A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim Acta 299:19–26 Du Z, Su Y, Qu Y et al (2019) A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim Acta 299:19–26
35.
Zurück zum Zitat Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81 Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81
36.
Zurück zum Zitat Wang Z-l, Tang Z-y (2004) A novel polymer electrolyte based on PMAML/PVDF-HFP blend. Electrochim Acta 49:1063–1068 Wang Z-l, Tang Z-y (2004) A novel polymer electrolyte based on PMAML/PVDF-HFP blend. Electrochim Acta 49:1063–1068
37.
Zurück zum Zitat Xu D, Jin J, Chen C, Wen Z (2018) A novel sustainable 3D cross-linked chitosan-PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS Appl Mater Interfaces 10:38526–38537 Xu D, Jin J, Chen C, Wen Z (2018) A novel sustainable 3D cross-linked chitosan-PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS Appl Mater Interfaces 10:38526–38537
38.
Zurück zum Zitat Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797 Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797
39.
Zurück zum Zitat Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624 Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624
40.
Zurück zum Zitat Chai J, Liu Z, Zhang J et al (2017) A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces 9:17897–17905 Chai J, Liu Z, Zhang J et al (2017) A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces 9:17897–17905
41.
Zurück zum Zitat Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186 Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186
42.
Zurück zum Zitat Wang X, Hao X, Xia Y, Liang Y, Xia X, Tu J (2019) A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J Membr Sci 582:37–47 Wang X, Hao X, Xia Y, Liang Y, Xia X, Tu J (2019) A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. J Membr Sci 582:37–47
43.
Zurück zum Zitat Xiao SY, Yang YQ, Li MX et al (2014) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sources 270:53–58 Xiao SY, Yang YQ, Li MX et al (2014) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sources 270:53–58
Metadaten
Titel
A renewable and biodegradable nanocellulose-based gel polymer electrolyte for lithium-ion battery
verfasst von
Jingren Gou
Wangyu Liu
Aimin Tang
Publikationsdatum
23.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04667-7

Weitere Artikel der Ausgabe 24/2020

Journal of Materials Science 24/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.