Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

A Schrödinger-type algorithm for solving the Schrödinger equations via Phragmén–Lindelöf inequalities

verfasst von: Lingling Zhao

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we consider the numerical method for solving the Schrödinger equations via Phragmén–Lindelöf inequalities under the order induced by a symmetric cone with the function involved being monotone. Based on the Phragmén–Lindelöf inequalities, the underlying system of inequalities is reformulated as a system of smooth equations, and a Schrödinger-type method is proposed to solve it iteratively so that a solution of the system of the Schrödinger equations is found. By means of the Schrödinger type inequalities, the algorithm is proved to be well defined and to be globally convergent under weak assumptions and locally quadratically convergent under suitable assumptions. Preliminary numerical results indicate that the algorithm is effective.
Hinweise

Abbreviations

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In this paper, we consider the following Schrödinger equation (see [18, 19]):
$$ - \Delta u +V(x)u= \biggl(\frac{1}{ \vert x \vert ^{\alpha }}\ast \vert u \vert ^{p} \biggr) \vert u \vert ^{p-2}u, \quad x \in \Re ^{n}, $$
(1.1)
where \(n\geq 3\), \(0<\alpha <n\), \(2-\frac{\alpha }{n}< p\leq 2^{\ast } _{\alpha }=\frac{2n-\alpha }{n-2}\) and
(A1)
\(V\in C(\mathbb{R}^{n},\mathbb{R^{+}})\) is coercive, that is,
$$ \lim_{|x|\to +\infty }V(x)=+\infty . $$
In 2016, Qiao et al. [19] first considered the bound and ground states for the nonlinear Schrödinger equations under the condition
(A2)
\(\inf_{\mathbb{R}^{n}} V>0\), and there exists a positive constant r satisfying
$$ \operatorname{meas}\bigl\{ x\in \mathbb{R}^{n}, \vert x-y \vert \leq r, V(x)\leq M\bigr\} \to 0 $$
as \(|y|\to \infty \), where \(M>0\) and meas stands for the Lebesgue measure.
The nonlinear system (1.1) has been proved to possess wide application fields in many real world problems such as anomalous diffusion [2, 4, 15], disease models [6, 9, 21], ecological models [26], synchronization of chaotic systems [1, 27], etc.
Put
$$ \nu (x):=\frac{1}{2} \bigl\Vert u(x) \bigr\Vert ^{2} $$
is the Nevanlinna norm (see [8]), problem (1.1) is equivalent to the following Schrödinger problem defined by
$$ \min \nu (x), $$
(1.2)
where \(x\in \Re ^{n}\).
The Phragmén–Lindelöf inequalities (see [23]) have the main objective to solve the so-called Schrödinger Phragmén–Lindelöf subproblem model to get the trial step \(\tau _{k}\)
$$\begin{aligned} \operatorname{Min}\quad & \mathcal{TW}_{k}(\tau ) = \frac{1}{2} \bigl\Vert u(x_{k})+\nabla S (x_{k}) \tau \bigr\Vert ^{2}, \\ &\Vert \tau \Vert \leq \triangle . \end{aligned}$$
In 2015, a modified Phragmén–Lindelöf inequality was proved by Wan [23]:
$$\begin{aligned} \operatorname{Min}\quad & \phi _{k}(\tau ) = \frac{1}{2} \bigl\Vert u(x_{k})+\nabla u(x_{k})\tau \bigr\Vert ^{2}, \\ &\Vert \tau \Vert \leq c^{p} \bigl\Vert u(x_{k}) \bigr\Vert ^{\gamma }, \end{aligned}$$
where p, c, and γ are three positive numbers.
Recently, another adaptive Schrödinger Phragmén–Lindelöf inequality has been defined by Qiao et al. [17]:
$$ \begin{aligned} \operatorname{Min}\quad & \mathcal{TM}_{k}(\tau ) = \frac{1}{2} \bigl\Vert u(x_{k})+\mathcal{B}_{k} \tau \bigr\Vert ^{2}, \\ &\Vert \tau \Vert \leq c^{p} \bigl\Vert u(x_{k}) \bigr\Vert , \end{aligned} $$
(1.3)
where \(\mathcal{B}_{k}\) is defined by
$$ \mathcal{B}_{k+1}=\mathcal{B}_{k} - \frac{\mathcal{B}_{k} s_{k} s_{k} ^{\mathcal{T}} \mathcal{B}_{k}}{s_{k}^{\mathcal{T}} \mathcal{B}_{k} s _{k}} + \frac{y_{k} {y_{k}}^{\mathcal{T}}}{{y_{k}}^{\mathcal{T}}s_{k}}, $$
(1.4)
\(y_{k}=u(x_{k+1})-u(x_{k})\) and \(s_{k}=x_{k+1}-x_{k}\). This Schrödinger Phragmén–Lindelöf method can possess the global convergence without the nondegeneracy (see [1, 7, 11, 26] etc.), which shows that this paper made a further progress in theory. And there exist many applications about the Schrödinger Phragmén–Lindelöf inequalities (see [3, 25, 27, 28] etc.) for nonsmooth optimizations and other problems.
We further consider the Schrödinger Phragmén–Lindelöf model for the nonlinear system \(u(x)\) at \(x_{k}\) (see [17])
$$ \vartheta (x_{k}+\tau )=u(x_{k})+\nabla u(x_{k})^{\mathcal{T}}d+ \frac{1}{2}\mathcal{T}_{k}d^{2}, $$
(1.5)
where \(\nabla u(x_{k})\) is the Jacobian matrix of \(u(x)\) at \(x_{k}\).
It is well known that the above model (1.5) can be written as the following extension (see [20, 23, 24]):
$$ \vartheta (x_{k}+\tau )=u(x_{k})+\nabla u(x_{k})^{\mathcal{T}}d+ \frac{3}{2}\bigl(s_{k-1}^{\mathcal{T}} \tau \bigr)^{2}s_{k-1}. $$
(1.6)
If we set the Schrödinger Phragmén–Lindelöf matrix \(\nabla u(x_{k})\), then we can use the Schrödinger Phragmén–Lindelöf matrix \(\mathcal{B}_{k}\) instead of it. Thus, our Schrödinger Phragmén–Lindelöf model can be defined as follows:
$$ \begin{aligned} \operatorname{Min}\quad& \mathcal{N}_{k}(\tau ) = \frac{1}{2} \biggl\Vert u(x_{k})+\mathcal{B}_{k}d+ \frac{3}{2}\bigl(s_{k-1}^{\mathcal{T}}\tau \bigr)^{2}s_{k-1} \biggr\Vert ^{2}, \\ &\Vert \tau \Vert \leq c^{p} \bigl\Vert u(x_{k}) \bigr\Vert ^{\gamma }, \end{aligned} $$
(1.7)
where \(\mathcal{B}_{k}=\mathcal{H}_{k}^{-1}\) and \(\mathcal{H}_{k}\) is generated by
$$\begin{aligned} \mathcal{H}_{k+1} =&\mathcal{V}_{k}^{\mathcal{T}} \mathcal{H}_{k} \mathcal{V}_{k}+\rho _{k}s_{k}s_{k}^{\mathcal{T}} \\ =& \mathcal{V}_{k}^{\mathcal{T}}\bigl[\mathcal{V}_{k-1}^{\mathcal{T}} \mathcal{H}_{k-1}\mathcal{V}_{k-1}+\rho _{k-1}s_{k-1}s_{k-1}^{ \mathcal{T}} \bigr]\mathcal{V}_{k}+\rho _{k}s_{k}s_{k}^{\mathcal{T}} \\ =& \cdots \\ =& \bigl[\mathcal{V}_{k}^{\mathcal{T}}\cdots \mathcal{V}_{k-{m}+1}^{ \mathcal{T}} \bigr]\mathcal{H}_{k-{m}+1}[\mathcal{V}_{k-{m}+1} \cdots \mathcal{V}_{k}] \\ &{}+\rho _{k-{m}+1}\bigl[\mathcal{V}_{k-1}^{\mathcal{T}}\cdots \mathcal{V} _{k-{m}+2}^{\mathcal{T}}\bigr]s_{k-{m}+1}s^{\mathcal{T}}_{k-{m}+1}[ \mathcal{V}_{k-{m}+2}\cdots \mathcal{V}_{k-1}] \\ &{}+ \cdots \\ &{}+\rho _{k}s_{k}s_{k}^{\mathcal{T}}, \end{aligned}$$
(1.8)
where \(\rho _{k}=\frac{1}{s_{k}^{\mathcal{T}}y_{k}}\), \(\mathcal{V} _{k}=I-\rho _{k}y_{k}s_{k}^{\mathcal{T}}\) (see [23] etc.).
Let \(\tau _{k}^{p}\) be the solution of (1.7). Define
$$ A\tau _{k}\bigl(\tau _{k}^{p} \bigr)=\nu \bigl(x_{k}+\tau _{k}^{p}\bigr)-\nu (x_{k}), $$
(1.9)
and predict reduction by
$$ \mathcal{P}\tau _{k}\bigl(\tau _{k}^{p} \bigr)=\mathcal{N}_{k}\bigl(\tau _{k}^{p}\bigr)- \mathcal{N}_{k}(0). $$
(1.10)
Based on definitions of \(A\tau _{k}(\tau _{k}^{p})\) and \(P\tau _{k}(\tau _{k}^{p})\), we design their ratio by
$$ r_{k}^{p} = \frac{A\tau _{k}(\tau _{k}^{p})}{\mathcal{P}\tau _{k}(\tau _{k}^{p})}. $$
(1.11)
Therefore, the Schrödinger-type algorithm for solving (1.1) is stated as follows.
Algorithm
Initial:
Let \(\mathfrak{B}_{0}=\mathfrak{H}_{0}^{-1}\in \Re ^{n}\times \Re ^{n}\) be a symmetric and positive definite matrix. \(x_{0}\in \Re ^{n}\) and \(\varrho =0\). ρ, c, and ϵ are three positive constants. Let \(l:=0\);
Step 1:
Stop if \(\|\chi (x_{l})\|<\epsilon \) holds;
Step 2:
Solve (1.7) with \(\triangle =\triangle _{l}\) to obtain \(\varsigma _{l}^{\varrho }\);
Step 3:
Compute \(A\varsigma _{l}(\varsigma _{l}^{\varrho })\), \(\mathcal{P}\varsigma _{l}(\varsigma _{l}^{\varrho })\), and the ratio \(r_{l}^{\varrho }\). If \(r_{l}^{\varrho }<\rho \), let \(\varrho =\varrho +1\), go to Step 2. If \(r_{l}^{\varrho }\geq \rho \), go to the next step;
Step 4:
Set \(x_{l+1}=x_{l}+\varsigma _{l}^{\varrho }\), \(y_{l}=\chi (x_{l+1})-\chi (x_{l})\), update \(\mathfrak{B}_{l+1}= \mathfrak{H}_{l+1}^{-1}\) by (1.8) if \(y_{l}^{\mathfrak{T}} \varsigma _{l}^{p}>0\), otherwise set \(\mathfrak{B}_{l+1}=\mathfrak{B} _{l}\);
Step 5:
Let \(l:=l+1\) and \(\varrho =0\). Go to Step 1.
In this paper, we further focus on convergence results of the above algorithm under the following assumptions.
Assumptions
(A)
Define the set Ω by
$$ \varOmega =\bigl\{ x|\varphi (x)\leq \varphi (x_{0})\bigr\} . $$
(1.12)
It is easy to see that Ω is bounded.
(B)
The nonlinear system \(\chi (x)\) is twice continuously differentiable in \(\varOmega _{1}\), which is an open convex set containing Ω.
(C)
The following Phragmén–Lindelöf relation
$$ \bigl\Vert \bigl[\nabla \chi (x_{l})- \mathfrak{B}_{l}\bigr]\chi (x_{l}) \bigr\Vert =O\bigl( \bigl\Vert \varsigma _{l}^{p} \bigr\Vert \bigr) $$
(1.13)
holds.
(D)
The sequence matrices \(\{\mathfrak{B}_{l}\}\) are uniformly bounded in \(\varOmega _{1}\).
It follows from Assumption (B) that (see [10, 22])
$$ \bigl\Vert \nabla \chi (x_{l})^{\mathfrak{T}}\nabla \chi (x_{l}) \bigr\Vert \leq M_{L}, $$
(1.14)
where \(M_{L}\) is a positive real number.

2 Convergence results

We first have the following new Phragmén–Lindelöf inequalities.
Lemma 2.1
Let \(\tau _{k}^{p}\) be the solution of (1.1). Then
$$ \mathcal{P}\tau _{k}\bigl(\tau _{k}^{p} \bigr)\leq -\frac{1}{2} \bigl\Vert \mathcal{B}_{k}u(x _{k}) \bigr\Vert \min \biggl\{ \triangle _{k}, \frac{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert }{M_{l} ^{2}}\biggr\} +O\bigl(\triangle _{k}^{2}\bigr) $$
(2.1)
holds.
Proof
Define
$$ \mathcal{J}(u)=\frac{1}{2} \int _{\Re ^{n}} \vert \nabla u \vert ^{2} + u^{2}\,dx- \frac{1}{2p} \int _{\Re ^{n}} \int _{\Re ^{n}} \frac{ \vert u(x) \vert ^{p} \vert u(y) \vert ^{p}}{ \vert x-y \vert ^{ \alpha }} \,dx \,dy. $$
It follows from (1.7) that
$$ j_{0}< j_{1}=\inf_{\mathcal{N}^{-}} \mathcal{J}(u)< j_{0}+\frac{p-1}{2p}S _{\alpha , p}^{\frac{p}{p-1}}. $$
Consider \(V(x)\) is a minimizer for both \(S_{\alpha , p}\). By the continuity of \(\mathcal{J}\), we know that
$$ \mathcal{J}(u_{0}+tV)< j_{0}+\frac{p-1}{2p}S_{\alpha , p}^{ \frac{p}{p-1}}, $$
where \(0\leq t<\gamma \).
So
$$\begin{aligned} \mathcal{J}(u_{0}+tV) &=\frac{1}{2} \Vert u_{0}+tV \Vert ^{2}-\frac{1}{2p} \tilde{B}(u_{0}+tV) - \int _{\Re ^{n}}h(u_{0}+tV)\,dx \\ &=\mathcal{J}(u_{0})+\frac{t^{2}}{2}\biggl[ \Vert V \Vert ^{2}-\frac{t^{p-2}}{p} \tilde{B}(V)\biggr] +\tilde{B}(u_{0})+ \tilde{B}(tV)-\tilde{B}(u_{0}+tV) \\ &< j_{0}+\frac{p-1}{2p}S_{\alpha , p}^{\frac{p}{p-1}}. \end{aligned}$$
It follows from \(t\geq \gamma \) that
$$\begin{aligned} \mathcal{J}(u_{0}+tV) &=\frac{1}{2} \Vert u_{0}+tV \Vert ^{2}-\frac{1}{2p} \tilde{B}(u_{0}+tV) - \int _{\Re ^{n}}h(u_{0}+tV)\,dx \\ &=\frac{1}{2} \Vert u_{0} \Vert ^{2}+t \int _{\Re ^{n}}\nabla u_{0}\nabla V+u_{0}V \,dx +\frac{t^{2}}{2} \Vert V \Vert ^{2}-\frac{1}{2p} \tilde{B}(u_{0}) \\ &\quad{}+\frac{1}{2p}\bigl[\tilde{B}(u_{0})+\tilde{B}(tV)- \tilde{B}(u_{0}+tV)\bigr] - \frac{1}{2p}\tilde{B}(tV) \\ &\quad{}- \int _{\Re ^{n}}hu_{0}\,dx- \int _{\Re ^{n}}htV \,dx \\ &=\mathcal{J}(u_{0})+\frac{t^{2}}{2}\biggl[ \Vert V \Vert ^{2}-\frac{t^{2(p-1)}}{2p} \tilde{B}(V)\biggr] +\frac{1}{2p}\biggl[ \tilde{B}(u_{0})+\tilde{B}(tV) \\ &\quad{}-\tilde{B}(u_{0}+tV)+2p \int _{\Re ^{n}} \int _{\Re ^{n}}\frac{ \vert u _{0}(x) \vert ^{p} \vert u_{0}(y) \vert ^{p-2}u_{0}(y)}{ \vert x-y \vert ^{\alpha }} \,dx \,dy\biggr] \\ &< j_{0}+\frac{p-1}{2p}S_{\alpha , p}^{\frac{p}{p-1}}. \end{aligned}$$
Here, we use that \(\langle J'(u_{0}), tV\rangle =0\) and \(V(x)\) is a solution of (1.1). By the definition of \(\tau _{k}^{p}\) [14, 16] and it being the solution of (1.7), we get
$$\begin{aligned} \mathcal{P}\tau _{k}\bigl(\tau _{k}^{p}\bigr) \leq & \mathcal{P}\tau _{k}\biggl(-\alpha \frac{\triangle _{k}}{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert } \mathcal{B}_{k}u(x _{k})\biggr) \\ =&\frac{1}{2}\biggl[\alpha ^{2} \triangle _{k}^{2} \frac{ \Vert \mathcal{B}_{k} \mathcal{B}_{k}u(x_{k}) \Vert ^{2}}{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert ^{2}}+\alpha ^{4} \triangle _{k}^{4} \frac{9}{4}\frac{(s_{k-1}^{\mathcal{T}} \mathcal{B}_{k}u(x_{k}))^{4}}{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert ^{4}} \\ &{}+ 3\alpha ^{2} \triangle _{k}^{2} \frac{(s_{k-1}^{\mathcal{T}} \mathcal{B}_{k}u(x_{k}))^{2}}{ \Vert \mathcal{B}_{k}s_{k-1} \Vert ^{2}}u(x_{k})^{ \mathcal{T}}s_{k-1}-2\alpha \triangle _{k} \frac{(u(x_{k})^{ \mathcal{T}}\mathcal{B}_{k}\mathcal{B}_{k}u(x_{k}))}{ \Vert \mathcal{B} _{k}u(x_{k}) \Vert } \\ &{}- 3\alpha ^{3}\triangle _{k}^{3} \frac{(s_{k-1}^{\mathcal{T}} \mathcal{B}_{k}u(x_{k}))^{2}s_{k-1}^{\mathcal{T}}\mathcal{B}_{k} \mathcal{B}_{k}u(x_{k})}{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert ^{3}}\biggr] \\ =& \frac{1}{2}\biggl[\alpha ^{2} \triangle _{k}^{2} \frac{ \Vert \mathcal{B}_{k} \mathcal{B}_{k}u(x_{k}) \Vert ^{2}}{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert ^{2}} -2 \alpha \triangle _{k} \frac{(u(x_{k})^{\mathcal{T}}\mathcal{B}_{k} \mathcal{B}_{k}u(x_{k}))}{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert }+O\bigl( \triangle _{k}^{2}\bigr)\biggr] \\ \leq & -\alpha \triangle _{k} \bigl\Vert \mathcal{B}_{k}u(x_{k}) \bigr\Vert +\frac{1}{2} \alpha ^{2} \triangle _{k}^{2} M_{l}^{2}+O\bigl(\triangle _{k}^{2}\bigr) \end{aligned}$$
for any \(\alpha \in [0,1]\).
Therefore
$$\begin{aligned} \mathcal{P}\tau _{k}\bigl(\tau _{k}^{p}\bigr) \leq & \min_{0\leq \alpha \leq 1}\biggl[- \alpha \triangle _{k} \bigl\Vert \mathcal{B}_{k}u(x_{k}) \bigr\Vert + \frac{1}{2} \alpha ^{2} \triangle _{k}^{2} M_{l}^{2}\biggr]+O\bigl(\triangle _{k}^{2} \bigr) \\ \leq &-\frac{1}{2} \bigl\Vert \mathcal{B}_{k}u(x_{k}) \bigr\Vert \min \biggl\{ \triangle _{k},\frac{ \Vert \mathcal{B}_{k}u(x_{k}) \Vert }{M_{l}^{2}}\biggr\} +O \bigl(\triangle _{k}^{2}\bigr). \end{aligned}$$
 □
Lemma 2.2
Let Assumptions (A), (B), (C), and (D) hold. Then
$$ \bigl\vert A\tau _{k}\bigl(\tau _{k}^{p} \bigr)-\mathcal{P}\tau _{k}\bigl(\tau _{k}^{p} \bigr) \bigr\vert =O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{2}\bigr), $$
where \(\tau _{k}\) is the solution of (1.7).
Proof
It follows from (1.9) and (1.10) that
$$\begin{aligned} \bigl\vert A\tau _{k}\bigl(\tau _{k}^{p} \bigr)-\mathcal{P}\tau _{k}\bigl(\tau _{k}^{p} \bigr) \bigr\vert =& \bigl\vert \nu \bigl(x_{k}+\tau _{k}^{p}\bigr)-\mathcal{N}_{k}\bigl(\tau _{k}^{p}\bigr) \bigr\vert \\ =& \frac{1}{2} \biggl\vert \bigl\Vert u(x_{k})+\nabla u(x_{k}) \tau _{k}^{p} +O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{2}\bigr) \bigr\Vert ^{2} \\ &{}- \biggl\Vert u(x_{k})+\mathcal{B}_{k}\tau _{k}^{p}+\frac{3}{2}\bigl(s_{k-1}^{ \mathcal{T}} \tau _{k}^{p}\bigr)^{2}s_{k-1} \biggr\Vert ^{2} \biggr\vert \\ =& \bigl\vert u(x_{k})^{\mathcal{T}}\nabla u(x_{k}) \tau _{k}^{p}-u(x_{k})^{ \mathcal{T}} \mathcal{B}_{k}\tau _{k}^{p}+O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{2}\bigr) \\ &{}+O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{3}\bigr)+O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{4}\bigr) \bigr\vert \\ \leq & \bigl\Vert \bigl[\nabla u(x_{k})-\mathcal{B}_{k} \bigr]u(x_{k}) \bigr\Vert \bigl\Vert \tau _{k}^{p} \bigr\Vert +O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{2}\bigr) \\ &{}+O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{3}\bigr)+O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{4}\bigr) \\ =&O\bigl( \bigl\Vert \tau _{k}^{p} \bigr\Vert ^{2}\bigr). \end{aligned}$$
 □
Theorem 2.1
Let Assumptions (A), (B), (C), and (D) hold. Then Algorithm either finitely stops or generates an infinite sequence \(\{x_{k}\}\) satisfying
$$ \lim_{k\rightarrow \infty } \bigl\Vert u(x_{k}) \bigr\Vert =0, $$
(2.2)
where \(\{x_{k}\}\) is defined as in Algorithm.
Proof
We know that \(t^{-}(u)\) is a continuous function of u. Consequently, the manifold \(\varLambda ^{-}\) disconnects \(D^{1,2}( {\Re ^{n}})\) in exactly two connected components \(\mathcal{U}_{1}\) and \(\mathcal{U}_{2}\), where
$$\begin{aligned}& \mathcal{U}_{1}= \biggl\{ u\in D^{1,2}\bigl({\Re ^{n}}\bigr): u=0 \text{ or } \Vert u \Vert _{D}< t^{-} \biggl(\frac{u}{ \Vert u \Vert _{D}} \biggr) \biggr\} , \\& \mathcal{U}_{2}= \biggl\{ u\in D^{1,2}\bigl({\Re ^{n}}\bigr): \Vert u \Vert _{D}>t^{-} \biggl( \frac{u}{ \Vert u \Vert _{D}} \biggr) \biggr\} . \end{aligned}$$
So \(D^{1,2}({\Re ^{n}})=\varLambda ^{-}\cup \mathcal{U}_{1} \cup \mathcal{U}_{2}\). In particular, \(u_{0}\in \varLambda ^{+} \subset \mathcal{U}_{1}\). Since
$$ t^{-} \biggl(\frac{u_{0}+tW}{ \Vert u_{0}+tW \Vert _{D}} \biggr)\frac{u_{0}+tW}{ \Vert u _{0}+tW \Vert _{D}}\in \varLambda , $$
we have
$$ 0< t^{-} \biggl(\frac{u_{0}+tW}{ \Vert u_{0}+tW \Vert _{D}} \biggr)< C_{0} $$
uniformly for \(t\in \mathbb{R}\).
On the other hand,
$$ \Vert u_{0}+tW \Vert _{D}\geq t \Vert W \Vert _{D}- \Vert u_{0} \Vert _{D}\geq C_{0}, $$
where \(t\geq \tilde{t}\).
So that we can fix a positive number \(t_{0}\) such that
$$ \Vert u_{0}+t_{0}W \Vert _{D}> t^{-}\biggl(\frac{u_{0}+t_{0}W}{ \Vert u_{0}+t_{0}W \Vert _{D}}\biggr), $$
which yields that
$$ u_{0}+t_{0}W\in \mathcal{U}_{2}. $$
Combining this and the fact \(u_{0}\in \mathcal{U}_{1}\), we know that
$$ u_{0}+t_{1}W\in \varLambda ^{-} $$
for some \(0< t_{1}< t_{0}\).
So
$$ c_{1}=\inf_{\varLambda ^{-}}I(u)\leq \max_{0\leq t\leq t_{0}}I(u_{0}+tW) < c _{0}+\frac{N+2-\alpha }{4N-2\alpha }S^{\frac{2N-\alpha }{N+2-\alpha }} _{H,L}. $$
And there exists a minimizing sequence \(\{u_{n}\}\subset \varLambda ^{-}\) satisfying
$$\begin{aligned}& I(u_{n})< c_{1}+\frac{1}{n}; \\& I(w)\geq I(u_{n})-\frac{1}{n} \Vert u-w \Vert _{D}, \end{aligned}$$
where \(w\in \varLambda ^{-}\).
So that
$$\begin{aligned} c_{1}+1 &>I(u_{n})=\frac{1}{2} \Vert u_{n} \Vert ^{2}_{D}-\frac{1}{2\cdot 2^{ \ast }_{\alpha }}B(u_{n})- \int _{\Re ^{n}}h(x)u_{n} \,dx \\ &\geq \biggl(\frac{1}{2}-\frac{1}{2\cdot 2^{\ast }_{\alpha }} \biggr) \Vert u _{n} \Vert ^{2}_{D} - \biggl(1- \frac{1}{2\cdot 2^{\ast }_{\alpha }} \biggr) \Vert h \Vert _{H^{-1}} \Vert u_{n} \Vert _{D}, \end{aligned}$$
which implies \(\|u_{n}\|\) has an upper bound.
It follows from \(\{u_{n}\}\subset \varLambda ^{-}\) that
$$ \Vert u_{n} \Vert ^{2}_{D}\leq \bigl(2\cdot 2^{\ast }_{\alpha }-1\bigr) \frac{ \Vert u_{n} \Vert ^{2^{\ast }_{\alpha }}_{D}}{S^{2^{\ast }_{\alpha }}_{H,L}}. $$
Thus, \(\|u_{n}\|_{D}\) has a uniform positive lower bound.
Similarly,
$$ I(u_{n})\to c_{1}, \qquad I'(u_{n}) \to 0\quad \text{in } H^{-1}. $$
By Lemma 2.2 and
$$ c_{1}< c_{0}+\frac{N+2-\alpha }{4N-2\alpha }S^{\frac{2N-\alpha }{N+2- \alpha }}_{H,L}, $$
we obtain that
$$ \int _{\Re ^{n}}h(x)u_{1}\,dx>0 \quad \text{and} \quad u_{1}\in \varLambda ^{+}, $$
which leads to a contradiction.
In the case \(h>0\). Applying Lemma 2.1 to \(u_{1}\) and \(|u_{1}|\), we know that there exists \(t^{-}(|u_{1}|)\) such that
$$ t^{-}\bigl( \vert u_{1} \vert \bigr) \vert u_{1} \vert \in \varLambda ^{-}. $$
Moreover,
$$ t^{-}\bigl( \vert u_{1} \vert \bigr)\geq t_{0}\bigl( \vert u_{1} \vert \bigr)=t_{0}(u_{1}) = \biggl[\frac{A(u_{1})}{(2^{ \ast }_{\alpha }-1)B(u_{1})} \biggr]^{\frac{1}{2^{\ast }_{\alpha }-2}}. $$
So
$$ \int _{\Re ^{n}}h(x)u_{1}\,dx= \int _{\Re ^{n}}h(x) \vert u_{1} \vert dx, $$
which implies that \(u_{1}\geq 0\). According to the maximum principle, we get \(u_{1}>0\).
It is easy to see that \(\|u_{n}\|\) is bounded, which yields that
$$ \Vert u_{n} \Vert ^{2}= \Vert w_{n} \Vert ^{2}+ \Vert v \Vert ^{2}+o(1),\quad n\to \infty , $$
and
$$\begin{aligned} & \int _{\Re ^{n}} \frac{ \vert w_{n}(x) \vert ^{p} \vert w_{n}(y) \vert ^{p}}{ \vert x-y \vert ^{\alpha }} \,dw \\ &\quad = \int _{\Re ^{n}} \frac{ \vert w_{n}(x) \vert ^{p} \vert w_{n}(y) \vert ^{p}}{ \vert x-y \vert ^{\alpha }} \,dw + \int _{\Re ^{n}} \frac{ \vert w(x) \vert ^{p} \vert w(y) \vert ^{p}}{ \vert x-y \vert ^{\alpha }} \,dw+o_{n}(1) \end{aligned}$$
as \(n\to \infty \).
So
$$\begin{aligned} c\leftarrow \mathcal{J}(w_{n}) &=\frac{1}{2} \Vert w_{n} \Vert ^{2}- \frac{1}{2p} \int _{\Re ^{n}} \frac{ \vert w_{n}(x) \vert ^{p} \vert w_{n}(y) \vert ^{p}}{ \vert x-y \vert ^{ \alpha }} \,dw - \int _{\Re ^{n}}h(x)w_{n} \,dx \\ &=\frac{1}{2} \Vert w_{n} \Vert ^{2}-\frac{1}{2p} \int _{\Re ^{n}} \frac{ \vert w_{n}(x) \vert ^{p} \vert w _{n}(y) \vert ^{p}}{ \vert x-y \vert ^{\alpha }} \,dw - \int _{\Re ^{n}}h(x)w_{n} \,dx \\ &\quad{}+\frac{1}{2} \Vert v \Vert ^{2}-\frac{1}{2p} \int _{\Re ^{n}} \frac{ \vert v(x) \vert ^{p} \vert v(y) \vert ^{p}}{ \vert x-y \vert ^{ \alpha }} \,dw - \int _{\Re ^{n}}h(x)v \,dx+o_{n}(1) \\ &=\mathcal{J}(v)+\frac{1}{2} \Vert w_{n} \Vert ^{2}-\frac{1}{2p}\tilde{B}(w _{n})+o_{n}(1) \end{aligned}$$
and
$$ \frac{1}{2} \Vert w_{n} \Vert ^{2}- \frac{1}{2p}\tilde{B}(w_{n})+o_{n}(1) < \frac{p-1}{2p}S_{\alpha , p}^{\frac{p}{p-1}}. $$
(2.3)
Notice that
$$ o(1)=\bigl\langle J'(u_{n}),u_{n}\bigr\rangle = \bigl\langle J'(v),v\bigr\rangle + \Vert w_{n} \Vert ^{2}-\tilde{B}(w_{n})+o(1), $$
which yields that
$$ \Vert w_{n} \Vert ^{2}- \tilde{B}(w_{n})=o(1). $$
(2.4)
It follows from (2.4) that
$$ \Vert w_{n} \Vert ^{2}=\tilde{B}(w_{n})\leq \frac{ \Vert w_{n} \Vert ^{2p}}{S_{\alpha , p} ^{p}} $$
and
$$\begin{aligned} \frac{1}{2}\frac{p-1}{p}S_{\alpha , p}^{\frac{p}{p-1}} &= \frac{1}{2}\biggl(1- \frac{1}{p}\biggr)S^{\frac{p}{p-1}} \\ &\leq \frac{1}{2}\biggl(1-\frac{1}{p}\biggr) \Vert w_{n} \Vert ^{2} \\ &=\frac{1}{2} \Vert w_{n} \Vert ^{2}- \frac{1}{2p}\tilde{B}(w_{n})+o_{n}(1) \\ &< \frac{p-1}{2p}S_{\alpha , p}^{\frac{p}{p-1}}, \end{aligned}$$
which also leads to a contradiction.
Suppose that
$$ \lim_{k\rightarrow \infty } \bigl\Vert \mathcal{B}_{k}u(x_{k}) \bigr\Vert =0 $$
(2.5)
holds. Using Assumption (C) we get (2.2). It follows from (2.5) that the subsequence \(\{k_{j}\}\) satisfies
$$ \bigl\Vert \mathcal{B}_{k_{j}}u(x_{k_{j}}) \bigr\Vert \geq \varepsilon . $$
(2.6)
Set
$$ K=\bigl\{ k| \bigl\Vert \mathcal{B}_{k}u(x_{k}) \bigr\Vert \geq \varepsilon \bigr\} . $$
So we assume that
$$ \bigl\Vert u(x_{k}) \bigr\Vert \geq \varepsilon $$
holds, where \(k\in K\).
It follows from the definition of Algorithm and Lemma 2.1 that
$$ \sum_{k\in K}\bigl[\nu (x_{k})-\nu (x_{k+1})\bigr]\geq -\sum_{k\in K}\rho \mathcal{P}\tau _{k}\bigl(\tau _{k}^{p_{k}}\bigr) \geq \sum_{k\in K}\rho \frac{1}{2}\min \biggl\{ c^{p_{k}}\varepsilon , \frac{\varepsilon }{M_{l}^{2}}\biggr\} \varepsilon . $$
Lemma 2.2 gives us that the sequence \(\{\nu (x_{k})\}\) is convergent, which yields that
$$ \sum_{k\in K}\rho \frac{1}{2}\min \biggl\{ c^{p_{k}}\varepsilon ,\frac{ \varepsilon }{M_{l}^{2}}\biggr\} \varepsilon < +\infty . $$
Then \(p_{k} \rightarrow +\infty \) when \(k\rightarrow +\infty \) and \(k\in K\). It follows that
$$ \begin{aligned} \min\quad & q_{k}(\tau ) =\frac{1}{2} \biggl\Vert u(x_{k})+\mathcal{B}_{k}\tau +\frac{3}{2}\bigl(s _{k-1}^{\mathcal{T}}\tau \bigr)^{2}s_{k-1} \biggr\Vert ^{2}, \\ &\mbox{s.t.} \quad \Vert \tau \Vert \leq c^{p_{k}-1} \bigl\Vert u(x_{k}) \bigr\Vert \end{aligned} $$
(2.7)
is unacceptable.
If we put \(x_{k+1}'=x_{k}+\tau _{k}'\), then we have
$$ \frac{\nu (x_{k})-\nu (x_{k+1}')}{-\mathcal{P}\tau _{k}(\tau _{k}')}< \rho . $$
(2.8)
By applying Lemma 2.1 and the definition of \(\triangle _{k}\), we know that
$$ -\mathcal{P}\tau _{k}\bigl(\tau _{k}'\bigr) \geq \frac{1}{2}\min \biggl\{ c^{p_{k}-1} \varepsilon , \frac{\varepsilon }{M_{l}^{2}}\biggr\} \varepsilon . $$
By applying Lemma 2.2, we know that
$$ \nu \bigl(x_{k+1}'\bigr)-\nu (x_{k})- \mathcal{P}\tau _{k}\bigl(\tau _{k}'\bigr)=O \bigl( \bigl\Vert \tau _{k}' \bigr\Vert ^{2} \bigr)=O\bigl(c^{2(p_{k}-1)}\bigr). $$
So
$$ \biggl\vert \frac{\nu (x_{k+1}')-\nu (x_{k})}{\mathcal{P}\tau _{k}(\tau _{k}')}-1 \biggr\vert \leq \frac{O(c^{2(p_{k}-1)})}{0.5\min \{c^{p_{k}-1}\varepsilon ,\frac{ \varepsilon }{M_{l}^{2}}\}\varepsilon +O(c^{2(p_{k}-1)}\varepsilon ^{2})}. $$
By applying \(p_{k}\rightarrow +\infty \) as \(k\rightarrow +\infty \), we know that
$$ \frac{\nu (x_{k})-\nu (x_{k+1}')}{-\mathcal{P}\tau _{k}(\tau _{k}')} \rightarrow 1, \quad k\in K, $$
which also gives a contradiction to (2.8). □

3 Numerical results

This section reports some numerical results of Algorithm.

3.1 Problems

Define
$$ u(x)=\bigl(\upsilon _{1}(x),\upsilon _{2}(x),\ldots , \upsilon _{n}(x)\bigr)^{ \mathcal{T}}. $$
Problem 1
The Schrödinger differential function (see [12])
$$ \upsilon _{l}(x)=2\Biggl(n+l(1-\cos x_{l})-\sin x_{l}-\sum_{j=1}^{n} \cos x _{j}\Biggr) (2\sin x_{l}-\cos x_{l}), $$
where \(l=1,2,3,\ldots ,n\).
Initial guess:
$$ x_{0}=\biggl(\frac{101}{100n},\frac{101}{100n},\ldots , \frac{101}{100n}\biggr)^{ \mathcal{T}}. $$
Problem 2
Logarithmic function
$$ \upsilon _{l}(x)=\ln (x_{l}+1)-\frac{x_{l}}{n}, $$
where \(l=1,2,3,\ldots ,n\).
Initial points:
$$ x_{0}=(1,1,\ldots ,1)^{\mathcal{T}}. $$
Problem 3
Schrödinger differential function (see [5, pp. 471–472])
$$\begin{aligned}& \upsilon _{1}(x) = (2-0.2x_{1})x_{1}-x_{2}+1, \\& \upsilon _{l}(x) = (2-0.2x_{l})x_{l}-x_{i-1}+x_{i+1}+1, \\& \upsilon _{n}(x) = (2-0.2x_{n})x_{n}-x_{n-1}+1, \end{aligned}$$
where \(l=1,2,3,\ldots ,n\).
Initial points:
$$ x_{0}=(-1,-1,\ldots ,-1)^{\mathcal{T}}. $$
Problem 4
Trigexp function (see [5, p. 473])
$$\begin{aligned}& \upsilon _{1}(x) = 3x_{1}^{3}+x_{2}-4+2 \sin (x_{1}-x_{2})\sin (x_{1}+x _{2}), \\& \upsilon _{l}(x) = -2x_{i-1}e^{x_{i-1}-x_{l}}+3x_{l} \bigl(4+3x_{l}^{2}\bigr)+2x _{i+1} \\& -\sin (x_{l}-x_{i+1})\sin (x_{l}+x_{i+1})-2, \\& \upsilon _{n}(x) = -2x_{n-1}e^{x_{n-1}-x_{n}}+3x_{n}-2, \end{aligned}$$
where \(l=1,2,3,\ldots ,n\).
Initial guess:
$$ x_{0}=(0,0,\ldots ,0)^{\mathcal{T}}. $$
Problem 5
Let \(u(x)\) be the gradient of
$$ h(x)=\sum_{l=1}^{n}\bigl(e^{x_{l}}-x_{l} \bigr). $$
Then
$$ \upsilon _{l}(x)=e^{x_{l}}-1, $$
where \(l=1,2,3,\ldots ,n\).
Initial points:
$$ x_{0}=\biggl(\frac{1}{n},\frac{2}{n},\ldots ,1 \biggr)^{\mathcal{T}}. $$
Parameters: \(c=0.2\), \(\epsilon =10^{-2}\), \(\rho =0.03\), \(p=3\), \(m=6\) \(\mathcal{H}_{0}\) is the unit matrix.
The method for (1.3) and (1.7): the Dogleg method [13, 25].
Code experiments: run on a PC with Intel Pentium(R) Xeon(R) E5507 CPU 2.27 GHz, 6.00 GB of RAM, and Windows 7 operating system.
Code software: MATLAB r2017a.
Stop rules: the program stops if \(\|u(x)\|\leq 1e-4\) holds.
Other cases: we will stop the program if the iteration number is larger than ten hundred.

3.2 Results and discussion

The column meaning in the following tables:
Dim: the dimension. NI: the number of iterations.
NG: the norm function number. Time: the CPU-time in seconds.
Numerical results of Table 1 show the performance of these two algorithms about NI, NG, and Time. It is not difficult to see that both of these algorithm can successfully solve all these ten nonlinear problems.
Table 1
Experiment results
Nr
Dim
Algorithm
Algorithm YL
Nr
Dim
Algorithm
Algorithm YL
Ni
NG
Time
NI
NG
Time
NI
NG
Time
NI
NG
Time
1
300
9
18
10.93567
11
22
1.778411
6
300
3
6
1.279208
5
6
0.7176046
800
9
18
52.46314
11
22
7.176046
 
800
3
6
5.397635
5
16
2.88601
1600
8
14
215.453
11
22
42.57267
 
1600
3
6
29.88979
5
16
16.39571
2
300
4
10
11.27887
6
7
1.185608
7
300
5
14
3.790824
12
49
1.435209
800
4
10
45.94229
6
7
4.071626
 
800
5
14
22.52654
12
49
4.69563
1600
4
10
251.38
6
7
22.58894
 
1600
5
14
102.0403
17
83
19.23492
3
300
4
10
2.808018
64
125
8.642455
8
300
1
2
1.294808
3
6
0.2808018
800
4
10
10.74847
78
129
52.26034
 
800
1
2
5.694037
3
6
0.8580055
1600
4
10
70.80885
68
99
262.5653
 
1600
1
2
31.091
3
6
3.775224
4
300
2
2
0.9112052
6
17
1.092007
9
300
13
19
11.01367
12
15
1.60681
800
2
2
2.839218
6
22
3.08882
 
800
9
15
40.95026
11
17
7.191646
1600
2
2
14.08689
6
22
13.27569
 
1600
10
19
299.3191
10
16
38.07984
5
300
3
6
1.731611
6
7
0.936006
10
300
3
9
4.558416
40
50
12.44888
800
3
6
5.616036
6
7
3.650423
 
800
3
9
11.62207
40
50
49.43672
1600
3
6
30.32659
6
7
22.44854
 
1600
3
9
73.07087
41
53
365.7911
It is easy to see that the NI and the NG of Algorithm have won since their performance profile plot is on top right. And the Time of Algorithm YL has superiority over Algorithm. Both of these two algorithms have good robustness.

4 Conclusions

In this paper, we considered the numerical method for solving the Schrödinger equations via Phragmén–Lindelöf inequalities under the order induced by a symmetric cone with the function involved being monotone. Based on the Phragmén–Lindelöf inequalities, the underlying system of inequalities was reformulated as a system of smooth equations, and a Schrödinger-type method was proposed to solve it iteratively so that a solution of the system of the Schrödinger equations was found. By means of the Schrödinger type inequalities, the algorithm was proved to be well defined and to be globally convergent under weak assumptions and locally quadratically convergent under suitable assumptions. Preliminary numerical results indicate that the algorithm was effective.

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The author declares that she has no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Abbreviations

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2012) CrossRef Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2012) CrossRef
2.
Zurück zum Zitat Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995) MATH Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995) MATH
3.
Zurück zum Zitat Borzi, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006) MathSciNetCrossRef Borzi, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006) MathSciNetCrossRef
4.
Zurück zum Zitat Bratsos, A.G.: A modified numerical scheme for the cubic Schrödinger equation. Numer. Methods Partial Differ. Equ. 27, 608–620 (2011) CrossRef Bratsos, A.G.: A modified numerical scheme for the cubic Schrödinger equation. Numer. Methods Partial Differ. Equ. 27, 608–620 (2011) CrossRef
5.
Zurück zum Zitat Gomez-Ruggiero, M., Martinez, J.M., Moretti, A.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 23, 459–483 (1992) MathSciNetCrossRef Gomez-Ruggiero, M., Martinez, J.M., Moretti, A.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 23, 459–483 (1992) MathSciNetCrossRef
6.
Zurück zum Zitat Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (2003) Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (2003)
7.
Zurück zum Zitat He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, Article ID 189 (2018) MathSciNetCrossRef He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, Article ID 189 (2018) MathSciNetCrossRef
8.
Zurück zum Zitat Huang, J., Tao, X.: Weighted estimates on the Neumann problem for Schrödinger equations in Lipschitz domains. Acta Math. Sci. Ser. A 36(06), 1165–1185 (2016) MathSciNetMATH Huang, J., Tao, X.: Weighted estimates on the Neumann problem for Schrödinger equations in Lipschitz domains. Acta Math. Sci. Ser. A 36(06), 1165–1185 (2016) MathSciNetMATH
9.
Zurück zum Zitat Kermack, W.O., M’Kendrick, A.D.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1997) CrossRef Kermack, W.O., M’Kendrick, A.D.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1997) CrossRef
10.
Zurück zum Zitat Ladde, G.S., Lakshmikatham, V.: Random Differential Inequalities. Academic Press, New York (1980) Ladde, G.S., Lakshmikatham, V.: Random Differential Inequalities. Academic Press, New York (1980)
11.
Zurück zum Zitat Li, Y., Sun, Y., Meng, F., Tian, Y.: Exponential stabilization of switched time-varying systems with delays and disturbances. Appl. Math. Comput. 324, 131–140 (2018) MathSciNet Li, Y., Sun, Y., Meng, F., Tian, Y.: Exponential stabilization of switched time-varying systems with delays and disturbances. Appl. Math. Comput. 324, 131–140 (2018) MathSciNet
12.
Zurück zum Zitat Liu, Z.: Existence results for the general Schrödinger equations with a superlinear Neumann boundary value problem. Bound. Value Probl. 2019, Article ID 61 (2019) CrossRef Liu, Z.: Existence results for the general Schrödinger equations with a superlinear Neumann boundary value problem. Bound. Value Probl. 2019, Article ID 61 (2019) CrossRef
13.
Zurück zum Zitat Lu, Y., Kou, L., Sun, J., Zhao, G., Wang, W., Han, Q.: New applications of Schrödinger type inequalities in the Schrödingerean Hardy space. J. Inequal. Appl. 2017, Article ID 306 (2017) CrossRef Lu, Y., Kou, L., Sun, J., Zhao, G., Wang, W., Han, Q.: New applications of Schrödinger type inequalities in the Schrödingerean Hardy space. J. Inequal. Appl. 2017, Article ID 306 (2017) CrossRef
14.
Zurück zum Zitat Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018) MathSciNetCrossRef Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018) MathSciNetCrossRef
15.
Zurück zum Zitat Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) CrossRef Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) CrossRef
16.
Zurück zum Zitat Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) MATH Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) MATH
17.
Zurück zum Zitat Qian, X., Chen, Y., Song, S.: Novel conservative methods for Schrödinger equations with variable coefficients over long time. Commun. Comput. Phys. 15(3), 692–711 (2014) MathSciNetCrossRef Qian, X., Chen, Y., Song, S.: Novel conservative methods for Schrödinger equations with variable coefficients over long time. Commun. Comput. Phys. 15(3), 692–711 (2014) MathSciNetCrossRef
18.
Zurück zum Zitat Qiao, B., Ruda, H.: Generalized Schrödinger equation and quantum measurement. Phys. A 355(2–4), 333–345 (2005) MathSciNetCrossRef Qiao, B., Ruda, H.: Generalized Schrödinger equation and quantum measurement. Phys. A 355(2–4), 333–345 (2005) MathSciNetCrossRef
19.
Zurück zum Zitat Qiao, L., Tang, S., Zhao, H.: Single peak soliton and periodic cusp wave of the generalized Schrödinger–Boussinesq equations. Commun. Theor. Phys. 63(6), 731–742 (2016) CrossRef Qiao, L., Tang, S., Zhao, H.: Single peak soliton and periodic cusp wave of the generalized Schrödinger–Boussinesq equations. Commun. Theor. Phys. 63(6), 731–742 (2016) CrossRef
20.
Zurück zum Zitat Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997) MathSciNetCrossRef Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997) MathSciNetCrossRef
21.
Zurück zum Zitat Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008) MathSciNetCrossRef Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008) MathSciNetCrossRef
22.
Zurück zum Zitat Taniguchi, T.: Almost sure exponential stability for stochastic partial functional differential equations. Stoch. Anal. Appl. 16(5), 965–975 (1998) MathSciNetCrossRef Taniguchi, T.: Almost sure exponential stability for stochastic partial functional differential equations. Stoch. Anal. Appl. 16(5), 965–975 (1998) MathSciNetCrossRef
23.
Zurück zum Zitat Wan, L.: Some remarks on Phragmén–Lindelöf theorems for weak solutions of the stationary Schrödinger operator. Bound. Value Probl. 2015, Article ID 239 (2015) CrossRef Wan, L.: Some remarks on Phragmén–Lindelöf theorems for weak solutions of the stationary Schrödinger operator. Bound. Value Probl. 2015, Article ID 239 (2015) CrossRef
24.
Zurück zum Zitat Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian. Bound. Value Probl. 2018, Article ID 94 (2018) MathSciNetCrossRef Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian. Bound. Value Probl. 2018, Article ID 94 (2018) MathSciNetCrossRef
25.
Zurück zum Zitat Wang, Y.J., Xiu, N.H.: Theory and Algorithm for Nonlinear Programming. Shanxi Science and Technology Press, Xian (2004) Wang, Y.J., Xiu, N.H.: Theory and Algorithm for Nonlinear Programming. Shanxi Science and Technology Press, Xian (2004)
26.
Zurück zum Zitat Yan, Z., Park, J., Zhang, W.: A unified framework for asymptotic and transient behavior of linear stochastic systems. Appl. Math. Comput. 325, 31–40 (2018) MathSciNet Yan, Z., Park, J., Zhang, W.: A unified framework for asymptotic and transient behavior of linear stochastic systems. Appl. Math. Comput. 325, 31–40 (2018) MathSciNet
27.
28.
Zurück zum Zitat Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Modél. Math. Anal. Numér. 35, 389–405 (2001) MathSciNetCrossRef Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Modél. Math. Anal. Numér. 35, 389–405 (2001) MathSciNetCrossRef
Metadaten
Titel
A Schrödinger-type algorithm for solving the Schrödinger equations via Phragmén–Lindelöf inequalities
verfasst von
Lingling Zhao
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2098-3

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe