Skip to main content
Erschienen in: Dynamic Games and Applications 4/2017

01.09.2016

A Semi-Lagrangian Scheme for a Modified Version of the Hughes’ Model for Pedestrian Flow

verfasst von: Elisabetta Carlini, Adriano Festa, Francisco J. Silva, Marie-Therese Wolfram

Erschienen in: Dynamic Games and Applications | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a semi-Lagrangian scheme for a regularized version of the Hughes’ model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an eikonal equation to determine the weighted distance to the exit. We consider this model in the presence of small diffusion and discuss the numerical analysis of the proposed semi-Lagrangian scheme. Furthermore, we illustrate the effect of small diffusion on the exit time with various numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alla A, Falcone M, Kalise D (2015) An efficient policy iteration algorithm for dynamic programming equations. SIAM J Sci Comput 37(1):A181–A200MathSciNetCrossRefMATH Alla A, Falcone M, Kalise D (2015) An efficient policy iteration algorithm for dynamic programming equations. SIAM J Sci Comput 37(1):A181–A200MathSciNetCrossRefMATH
2.
Zurück zum Zitat Amadori D, Goatin P, Rosini MD (2014) Existence results for Hughes’ model for pedestrian flows. J Math Anal Appl 420(1):387–406MathSciNetCrossRefMATH Amadori D, Goatin P, Rosini MD (2014) Existence results for Hughes’ model for pedestrian flows. J Math Anal Appl 420(1):387–406MathSciNetCrossRefMATH
3.
Zurück zum Zitat Amadori D, Di Francesco M (2012) The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math Sci 32(1):259–280MathSciNetCrossRefMATH Amadori D, Di Francesco M (2012) The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math Sci 32(1):259–280MathSciNetCrossRefMATH
5.
Zurück zum Zitat Axelsson O (1996) Iterative solution methods. Cambridge University Press, New YorkMATH Axelsson O (1996) Iterative solution methods. Cambridge University Press, New YorkMATH
6.
Zurück zum Zitat Bellomo N, Dogbe C (2011) On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev 53(3):409–463MathSciNetCrossRefMATH Bellomo N, Dogbe C (2011) On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev 53(3):409–463MathSciNetCrossRefMATH
7.
Zurück zum Zitat Bensoussan A, Frehse J, Yam P (2013) Mean field games and mean field type control theory. Springer briefs in mathematics. Springer, New YorkCrossRefMATH Bensoussan A, Frehse J, Yam P (2013) Mean field games and mean field type control theory. Springer briefs in mathematics. Springer, New YorkCrossRefMATH
8.
Zurück zum Zitat Bertsekas D (1995) Dynamic programming and optimal control. Athena Scientific, BelmontMATH Bertsekas D (1995) Dynamic programming and optimal control. Athena Scientific, BelmontMATH
9.
Zurück zum Zitat Blue VJ, Adler JL (2001) Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Trasp Res B Methodol 35(3):293–312CrossRef Blue VJ, Adler JL (2001) Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Trasp Res B Methodol 35(3):293–312CrossRef
10.
Zurück zum Zitat Bossy M, Gobet E, Talay D (2004) A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J Appl Probab 41(3):877–889MathSciNetMATH Bossy M, Gobet E, Talay D (2004) A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J Appl Probab 41(3):877–889MathSciNetMATH
11.
Zurück zum Zitat Burger M, Di Francesco M, Markowich PA, Wolfram MT (2014) Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Contin Dyn Syst Ser B 19(5):1311–1333MathSciNetCrossRefMATH Burger M, Di Francesco M, Markowich PA, Wolfram MT (2014) Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Contin Dyn Syst Ser B 19(5):1311–1333MathSciNetCrossRefMATH
12.
Zurück zum Zitat Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys A 295(3):507–525CrossRefMATH Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys A 295(3):507–525CrossRefMATH
13.
Zurück zum Zitat Cacace S, Falcone M (2016) A dynamic domain decomposition for the eikonal-diffusion equation. Discrete Contin Dyn Syst 9(1):109–123MathSciNetCrossRefMATH Cacace S, Falcone M (2016) A dynamic domain decomposition for the eikonal-diffusion equation. Discrete Contin Dyn Syst 9(1):109–123MathSciNetCrossRefMATH
14.
Zurück zum Zitat Camilli F, Falcone M (1995) An approximation scheme for the optimal control of diffusion processes. RAIRO Modél Math Anal Numér 29(1):97–122MathSciNetCrossRefMATH Camilli F, Falcone M (1995) An approximation scheme for the optimal control of diffusion processes. RAIRO Modél Math Anal Numér 29(1):97–122MathSciNetCrossRefMATH
15.
Zurück zum Zitat Carlini E, Silva FJ (2013) Semi-Lagrangian schemes for mean field game models. In: Decision and control (CDC) 2013 IEEE 52nd annual conference, pp 3115–3120 Carlini E, Silva FJ (2013) Semi-Lagrangian schemes for mean field game models. In: Decision and control (CDC) 2013 IEEE 52nd annual conference, pp 3115–3120
16.
Zurück zum Zitat Carlini E, Silva FJ (2014) A fully discrete Semi-Lagrangian scheme for a first order mean field game problem. SIAM J Num Anal 52(1):45–67MathSciNetCrossRefMATH Carlini E, Silva FJ (2014) A fully discrete Semi-Lagrangian scheme for a first order mean field game problem. SIAM J Num Anal 52(1):45–67MathSciNetCrossRefMATH
17.
Zurück zum Zitat Carlini E, Silva FJ (2015) A semi-Lagrangian scheme for a degenerate second order mean field game system. Discret Contin Dyn Syst 35(9):4269–4292MathSciNetCrossRefMATH Carlini E, Silva FJ (2015) A semi-Lagrangian scheme for a degenerate second order mean field game system. Discret Contin Dyn Syst 35(9):4269–4292MathSciNetCrossRefMATH
18.
Zurück zum Zitat Carmona R, Delarue F (2015) Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann Probab 43(5):2647–2700MathSciNetCrossRefMATH Carmona R, Delarue F (2015) Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann Probab 43(5):2647–2700MathSciNetCrossRefMATH
19.
Zurück zum Zitat Carrillo JA, Martin S, Wolfram MT (2016) An improved version of the Hughes model for pedestrian flow. Math Models Methods Appl Sci 26(4):671–697MathSciNetCrossRefMATH Carrillo JA, Martin S, Wolfram MT (2016) An improved version of the Hughes model for pedestrian flow. Math Models Methods Appl Sci 26(4):671–697MathSciNetCrossRefMATH
20.
22.
Zurück zum Zitat Cristiani E, Piccoli B, Tosin A (2014) Multiscale modeling of pedestrian dynamics. MS&A: modeling, simulations and applications, vol 12. Springer, New YorkMATH Cristiani E, Piccoli B, Tosin A (2014) Multiscale modeling of pedestrian dynamics. MS&A: modeling, simulations and applications, vol 12. Springer, New YorkMATH
23.
Zurück zum Zitat Cristiani E, Priuli FS, Tosin A (2015) Modeling rationality to control self-organization of crowds: an environmental approach. SIAM J Appl Math 75(2):605–629MathSciNetCrossRefMATH Cristiani E, Priuli FS, Tosin A (2015) Modeling rationality to control self-organization of crowds: an environmental approach. SIAM J Appl Math 75(2):605–629MathSciNetCrossRefMATH
24.
Zurück zum Zitat Cristiani E, Falcone M (2007) Fast semi-Lagrangian schemes for the eikonal equation and applications. SIAM J Numer Anal 45(5):1979–2011MathSciNetCrossRefMATH Cristiani E, Falcone M (2007) Fast semi-Lagrangian schemes for the eikonal equation and applications. SIAM J Numer Anal 45(5):1979–2011MathSciNetCrossRefMATH
25.
Zurück zum Zitat Degond P, Appert-Rolland C, Pettré J, Theraulaz G (2013) Vision-based macroscopic pedestrian models. Kinet Relat Models 6(4):809–839MathSciNetCrossRefMATH Degond P, Appert-Rolland C, Pettré J, Theraulaz G (2013) Vision-based macroscopic pedestrian models. Kinet Relat Models 6(4):809–839MathSciNetCrossRefMATH
26.
Zurück zum Zitat Di Francesco M, Markowich PA, Pietschmann FP, Wolfram MT (2011) On the Hughes’ model for pedestrian flow: the one-dimensional case. J Differ Equ 250(3):1334–1362MathSciNetCrossRefMATH Di Francesco M, Markowich PA, Pietschmann FP, Wolfram MT (2011) On the Hughes’ model for pedestrian flow: the one-dimensional case. J Differ Equ 250(3):1334–1362MathSciNetCrossRefMATH
27.
Zurück zum Zitat Falcone M (2006) Numerical methods for differential games based on partial differential equations. Int Game Theory Rev 8(2):231–272MathSciNetCrossRefMATH Falcone M (2006) Numerical methods for differential games based on partial differential equations. Int Game Theory Rev 8(2):231–272MathSciNetCrossRefMATH
28.
Zurück zum Zitat Falcone M, Ferretti R (2013) Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi Equations. MOS-SIAM series on optimization Falcone M, Ferretti R (2013) Semi-Lagrangian approximation schemes for linear and Hamilton–Jacobi Equations. MOS-SIAM series on optimization
29.
Zurück zum Zitat Fleming WH, Soner HM (1993) Controlled Markov processes and viscosity solutions. Springer, New YorkMATH Fleming WH, Soner HM (1993) Controlled Markov processes and viscosity solutions. Springer, New YorkMATH
31.
Zurück zum Zitat Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282CrossRef Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282CrossRef
32.
Zurück zum Zitat Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–252MathSciNetMATH Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–252MathSciNetMATH
33.
Zurück zum Zitat Huang L, Wong SC, Zhang M, Shu CW, Lam WH (2009) Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp Res B Methodol 43(1):127–141CrossRef Huang L, Wong SC, Zhang M, Shu CW, Lam WH (2009) Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp Res B Methodol 43(1):127–141CrossRef
34.
Zurück zum Zitat Hughes LR (2002) A continuum theory for the flow of pedestrians. Trasp Res B Methodol 36(6):507–535CrossRef Hughes LR (2002) A continuum theory for the flow of pedestrians. Trasp Res B Methodol 36(6):507–535CrossRef
35.
Zurück zum Zitat Jourdain B, Méléard S (1998) Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann Inst H Poincaré Probab Stat 34(6):727–766MathSciNetCrossRefMATH Jourdain B, Méléard S (1998) Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann Inst H Poincaré Probab Stat 34(6):727–766MathSciNetCrossRefMATH
36.
Zurück zum Zitat Lachapelle A, Wolfram MT (2011) On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp Res B Methodol 45(10):1572–1589CrossRef Lachapelle A, Wolfram MT (2011) On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp Res B Methodol 45(10):1572–1589CrossRef
38.
Zurück zum Zitat Liu Y, Sun C, Bie Y (2015) Modeling unidirectional pedestrian movement: An investigation of diffusion behavior in the built environment. Math Prob Eng. doi:10.1155/2015/308261 Liu Y, Sun C, Bie Y (2015) Modeling unidirectional pedestrian movement: An investigation of diffusion behavior in the built environment. Math Prob Eng. doi:10.​1155/​2015/​308261
39.
Zurück zum Zitat McKean HP (1966) A class of Markov processes associated with nonlinear parabolic equations. Proc Nat Acad Sci USA 56:1907–1911MathSciNetCrossRefMATH McKean HP (1966) A class of Markov processes associated with nonlinear parabolic equations. Proc Nat Acad Sci USA 56:1907–1911MathSciNetCrossRefMATH
40.
Zurück zum Zitat McKean HP (1967) Propagation of chaos for a class of non-linear parabolic equations. Stochastic Differential Equations. Lecture Series in Differential Equations, vol 7, pp 41–57 McKean HP (1967) Propagation of chaos for a class of non-linear parabolic equations. Stochastic Differential Equations. Lecture Series in Differential Equations, vol 7, pp 41–57
41.
Zurück zum Zitat Méléard S (1996) Asymptotic behaviour of some interacting particle systems; McKean–Vlasov and Boltzmann models. Lecture notes in mathematics. Springer, BerlinMATH Méléard S (1996) Asymptotic behaviour of some interacting particle systems; McKean–Vlasov and Boltzmann models. Lecture notes in mathematics. Springer, BerlinMATH
42.
Zurück zum Zitat Piccoli B, Tosin A (2011) Time-evolving measures and macroscopic modeling of pedestrian flow. Arch Ration Mech An 199(3):707–738MathSciNetCrossRefMATH Piccoli B, Tosin A (2011) Time-evolving measures and macroscopic modeling of pedestrian flow. Arch Ration Mech An 199(3):707–738MathSciNetCrossRefMATH
43.
Zurück zum Zitat Protter P (2005) Stochastic integration and differential equations. Springer, HeidelbergCrossRef Protter P (2005) Stochastic integration and differential equations. Springer, HeidelbergCrossRef
44.
Zurück zum Zitat Puterman ML, Brumelle SL (1979) On the convergence of policy iteration in stationary dynamic programming. Math Oper Res 4(1):60–69MathSciNetCrossRefMATH Puterman ML, Brumelle SL (1979) On the convergence of policy iteration in stationary dynamic programming. Math Oper Res 4(1):60–69MathSciNetCrossRefMATH
46.
Zurück zum Zitat Sethian JA (1999) Level sets methods and fast marching methods. Cambridge University Press, CambridgeMATH Sethian JA (1999) Level sets methods and fast marching methods. Cambridge University Press, CambridgeMATH
47.
Zurück zum Zitat Sznitman AS (1991) Topics in propagation of chaos. Lecture notes in mathematics. Springer, BerlinMATH Sznitman AS (1991) Topics in propagation of chaos. Lecture notes in mathematics. Springer, BerlinMATH
48.
Zurück zum Zitat Thompson PA, Marchant EW (1995) Computer and fluid modelling of evacuation. Saf Sci 18(4):277–289CrossRef Thompson PA, Marchant EW (1995) Computer and fluid modelling of evacuation. Saf Sci 18(4):277–289CrossRef
49.
50.
Zurück zum Zitat Twarogowska M, Goatin P, Duvigneau R (2014) Macroscopic modeling and simulations of room evacuation. Appl Math Model 38(24):5781–5795MathSciNetCrossRef Twarogowska M, Goatin P, Duvigneau R (2014) Macroscopic modeling and simulations of room evacuation. Appl Math Model 38(24):5781–5795MathSciNetCrossRef
Metadaten
Titel
A Semi-Lagrangian Scheme for a Modified Version of the Hughes’ Model for Pedestrian Flow
verfasst von
Elisabetta Carlini
Adriano Festa
Francisco J. Silva
Marie-Therese Wolfram
Publikationsdatum
01.09.2016
Verlag
Springer US
Erschienen in
Dynamic Games and Applications / Ausgabe 4/2017
Print ISSN: 2153-0785
Elektronische ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-016-0202-6

Weitere Artikel der Ausgabe 4/2017

Dynamic Games and Applications 4/2017 Zur Ausgabe