Skip to main content

2011 | OriginalPaper | Buchkapitel

18. A Spatially Explicit Environmental Health Surveillance Framework for Tick-Borne Diseases

verfasst von : Aldo Aviña, Chetan Tiwari, Phillip Williamson, Joseph Oppong, Sam Atkinson

Erschienen in: Geospatial Analysis of Environmental Health

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We demonstrate how applying a spatially explicit context to an existing environmental health surveillance framework is vital for more complete surveillance of disease, and for disease prevention and intervention strategies. To illustrate this framework, we present a case study that involves estimating the risk of human exposure to Lyme disease. The spatially explicit framework divides the surveillance process into three components: hazard surveillance, exposure surveillance, and outcome surveillance. The components are used both collectively and individually, to assess risk of exposure to infected ticks. By utilizing all surveillance components, we identify different areas of risk which would not have been identified otherwise. Hazard surveillance uses maximum entropy modeling and Geographically Weighted Regression analysis to create spatial models that predict the geographic distribution of ticks in Texas. Exposure surveillance uses GIS methods to estimate the risk of human exposures to infected ticks, resulting in a map that predicts the likelihood of human-tick interactions across Texas, using LandScan 2008™ population data. Lastly, outcome surveillance uses kernel density estimation-based methods to describe and analyze the spatial patterns of tick-borne diseases, which results in a continuous map that reflects disease rates based on population location. Data for this study was obtained from the Texas Department of Health Services and the University of North Texas Health Science Center. The data includes disease data on Lyme disease from 2004 to 2008, and the tick distribution estimates are based on field collections across Texas from 2004 to 2008.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brownstein JS, Holford TR, Fish D (2003) A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111(9):1152–1157CrossRef Brownstein JS, Holford TR, Fish D (2003) A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111(9):1152–1157CrossRef
Zurück zum Zitat Dennis DT et al (1998) Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol 35(5):629–638 Dennis DT et al (1998) Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol 35(5):629–638
Zurück zum Zitat Eisen RJ, Lane RS, Fritz CL, Eisen L (2006) Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am J Trop Med Hyg 75(4):669–676 Eisen RJ, Lane RS, Fritz CL, Eisen L (2006) Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am J Trop Med Hyg 75(4):669–676
Zurück zum Zitat Elliot P, Wartenberg D (2004) Spatial epidemiology: current approaches and future challenges. Environ Health Perspect 112(9):998–1006CrossRef Elliot P, Wartenberg D (2004) Spatial epidemiology: current approaches and future challenges. Environ Health Perspect 112(9):998–1006CrossRef
Zurück zum Zitat Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester
Zurück zum Zitat Glass GE et al (1995) Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health 85(7):944–948CrossRef Glass GE et al (1995) Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health 85(7):944–948CrossRef
Zurück zum Zitat Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135(2000):147–186CrossRef Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135(2000):147–186CrossRef
Zurück zum Zitat Kitron U, Kazmierczak JJ (1997) Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 145(6):558–566 Kitron U, Kazmierczak JJ (1997) Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 145(6):558–566
Zurück zum Zitat LandScan 2008™ (2008) LandScan 2008™ high resolution global population dataset. Oak Ridge National Laboratory, UT-Battelle, LLC, Oak Ridge, TN LandScan 2008™ (2008) LandScan 2008™ high resolution global population dataset. Oak Ridge National Laboratory, UT-Battelle, LLC, Oak Ridge, TN
Zurück zum Zitat LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100(2):567–571CrossRef LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100(2):567–571CrossRef
Zurück zum Zitat Martinez A, Salinas A, Martinez F, Cantu A, Miller DK (1999) Serosurvey for selected disease agents in white-tailed deer from Mexico. J Wildl Dis 35(4):799–803 Martinez A, Salinas A, Martinez F, Cantu A, Miller DK (1999) Serosurvey for selected disease agents in white-tailed deer from Mexico. J Wildl Dis 35(4):799–803
Zurück zum Zitat National Land Cover Dataset, US Geological Survey. Multi-Resolution Land Characteristics Consortium. [Online] (Updated 26 Jan 2010) Available at: http://www.mrlc.gov. Accessed Oct 2009 National Land Cover Dataset, US Geological Survey. Multi-Resolution Land Characteristics Consortium. [Online] (Updated 26 Jan 2010) Available at: http://​www.​mrlc.​gov. Accessed Oct 2009
Zurück zum Zitat Nuckols JR, Ward MH, Jarup L (2004) Using geographic information systems for exposure assessment in environmental epidemiology studies. Environ Health Perspect 112(9):1007–1015CrossRef Nuckols JR, Ward MH, Jarup L (2004) Using geographic information systems for exposure assessment in environmental epidemiology studies. Environ Health Perspect 112(9):1007–1015CrossRef
Zurück zum Zitat Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190(2006):231–259CrossRef Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190(2006):231–259CrossRef
Zurück zum Zitat Phillips SJ, Dudík M, Schapire RE (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Alberta, Canada 04–08 July 2004. ACM: New York Phillips SJ, Dudík M, Schapire RE (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Alberta, Canada 04–08 July 2004. ACM: New York
Zurück zum Zitat Thacker SB, Stroup DF, Parrish RG, Anderson HA (1996) Surveillance in environmental public health: issues, systems, and sources. Am J Public Health 86(5):633–638CrossRef Thacker SB, Stroup DF, Parrish RG, Anderson HA (1996) Surveillance in environmental public health: issues, systems, and sources. Am J Public Health 86(5):633–638CrossRef
Zurück zum Zitat Tiwari C, Rushton G (2005) Using spatially adaptive filters to map late stage colorectal cancer incidence in Iowa. In Fisher P (ed) Developments in spatial data handling. Springer, London, pp. 665–676CrossRef Tiwari C, Rushton G (2005) Using spatially adaptive filters to map late stage colorectal cancer incidence in Iowa. In Fisher P (ed) Developments in spatial data handling. Springer, London, pp. 665–676CrossRef
Metadaten
Titel
A Spatially Explicit Environmental Health Surveillance Framework for Tick-Borne Diseases
verfasst von
Aldo Aviña
Chetan Tiwari
Phillip Williamson
Joseph Oppong
Sam Atkinson
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0329-2_18