Skip to main content
Erschienen in: Journal of Scientific Computing 2/2020

01.05.2020 | Review

A Staggered Semi-implicit Discontinuous Galerkin Scheme with a Posteriori Subcell Finite Volume Limiter for the Euler Equations of Gasdynamics

verfasst von: Matteo Ioriatti, Michael Dumbser, Raphaël Loubère

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we propose a novel semi-implicit Discontinuous Galerkin (DG) finite element scheme on staggered meshes with a posteriori subcell finite volume limiting for the one and two dimensional Euler equations of compressible gasdynamics. We therefore extend the strategy adopted by Dumbser and Casulli (Appl Math Comput 272:479–497, 2016), where the Euler equations have been solved solved using a semi-implicit finite volume scheme based on the flux-vector splitting method recently proposed by Toro and Vázquez-Cendón (Comput Fluids 70:1–12, 2012). In our scheme, the nonlinear convective terms are discretized explicitly, while the pressure terms are discretized implicitly. As a consequence, the time step is restricted only by a mild CFL condition based on the fluid velocity, which makes this method particularly suitable for simulations in the low Mach number regime. However, the conservative formulation of the scheme, together with the novel subcell finite volume limiter allows also the numerical simulation of high Mach number flows with shock waves. Inserting the discrete momentum equation into the discrete total energy conservation law yields a mildly nonlinear system with the scalar pressure as the only unknown. Due to the use of staggered meshes, the resulting pressure system has the most compact stencil possible and can be efficiently solved with modern iterative methods. In order to deal with shock waves or steep gradients, the new semi-implicit DG scheme proposed in this paper includes an a posteriori subcell finite volume limiting technique. This strategy was first proposed by Dumbser et al. (J Comput Phys 278:47–75, 2014) for explicit DG schemes on collocated grids and is based on the a posteriori MOOD algorithm of Clain, Loubère and Diot. Recently, this methodology was also extended to semi-implicit DG schemes on staggered meshes for the shallow water equations in Ioriatti and Dumbser (Appl Numer Math 135:443–480, 2019). Within the MOOD approach, an unlimited DG scheme first produces a so-called candidate solution for the next time level \(t^{n+1}\). Later on, the control volumes with a non-admissible candidate solution are identified by using physical and numerical detection criteria, such as the positivity of the solution, the absence of floating point errors and the satisfaction of a relaxed discrete maximum principle (DMP). Then, in the detected troubled cells a more robust first order semi-implicit finite volume (FV) method is applied on a sub-grid composed of \(2P + 1\) subcells, where P denotes the polynomial degree used in the DG scheme. For that purpose, the nonlinear convective terms are recomputed in the troubled cells using an explicit finite volume scheme on the subcell level. Also the linear system for the pressure needs to be assembled and solved again, but where now a low order semi-implicit finite volume scheme is used on the sub-cell level in all troubled DG elements, instead of the original high order DG method. Finally, the higher order DG polynomials are reconstructed from the piecewise constant subcell finite volume averages and the scheme proceeds to the next time step. In this paper we present, discuss and test this novel family of methods and simulate a set of classical numerical benchmark problems of compressible gasdynamics. Great attention is dedicated to 1D and 2D Riemann problems and we also show that for these test cases the scheme responds appropriately in the presence of shock waves and does not produce non-physical spurious numerical oscillations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
When the index i is omitted in the vector of degrees of freedom we intend the entire set of all degrees of freedom of all elements.
 
Literatur
1.
Zurück zum Zitat Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218, 208–221 (2006)MathSciNetMATH Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218, 208–221 (2006)MathSciNetMATH
2.
Zurück zum Zitat Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comput. Fluids 36, 1529–1546 (2007)MathSciNetMATH Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comput. Fluids 36, 1529–1546 (2007)MathSciNetMATH
3.
Zurück zum Zitat Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetMATH Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetMATH
4.
Zurück zum Zitat Baumann, C., Oden, J.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)MathSciNetMATH Baumann, C., Oden, J.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)MathSciNetMATH
5.
Zurück zum Zitat Baumann, C., Oden, J.: A discontinuous hp finite element method for the Euler and Navier–Stokes equation. Int. J. Numer. Methods Fluids 31, 79–95 (1999)MathSciNetMATH Baumann, C., Oden, J.: A discontinuous hp finite element method for the Euler and Navier–Stokes equation. Int. J. Numer. Methods Fluids 31, 79–95 (1999)MathSciNetMATH
6.
Zurück zum Zitat Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)MathSciNetMATH Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)MathSciNetMATH
7.
Zurück zum Zitat Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian–Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449–479 (2017)MathSciNetMATH Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian–Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449–479 (2017)MathSciNetMATH
8.
Zurück zum Zitat Boscheri, W., Dumbser, M., Loubère, R.: Cell centered direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput. Fluids 134–135, 111–129 (2016)MathSciNetMATH Boscheri, W., Dumbser, M., Loubère, R.: Cell centered direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput. Fluids 134–135, 111–129 (2016)MathSciNetMATH
9.
Zurück zum Zitat Busto, S., Chiocchetti, S., Dumbser, M., Gaburro, E., Peshkov, I.: High order ADER schemes for continuum mechanics. Front. Phys. arXiv:1912.01964 Busto, S., Chiocchetti, S., Dumbser, M., Gaburro, E., Peshkov, I.: High order ADER schemes for continuum mechanics. Front. Phys. arXiv:​1912.​01964
10.
Zurück zum Zitat Busto, S., Ferrín, J.L., Toro, E.F., Vázquez-Cendón, M.E.: A projection hybrid high order finite volume/finite element method for incompressible turbulent flows. J. Comput. Phys. 353, 169–192 (2018)MathSciNetMATH Busto, S., Ferrín, J.L., Toro, E.F., Vázquez-Cendón, M.E.: A projection hybrid high order finite volume/finite element method for incompressible turbulent flows. J. Comput. Phys. 353, 169–192 (2018)MathSciNetMATH
11.
Zurück zum Zitat Busto, S., Toro, Eleuterio F., Elena Vázquez-Cendón, M.: Design and analysis of ADER-type schemes for model advection–diffusion–reaction equations. J. Comput. Phys. 327, 553–575 (2016)MathSciNetMATH Busto, S., Toro, Eleuterio F., Elena Vázquez-Cendón, M.: Design and analysis of ADER-type schemes for model advection–diffusion–reaction equations. J. Comput. Phys. 327, 553–575 (2016)MathSciNetMATH
12.
Zurück zum Zitat Casulli, V.: Semi-implicit finite difference methods for the two-dimensional shallow water equations. J. Comput. Phys. 86, 56–74 (1990)MathSciNetMATH Casulli, V.: Semi-implicit finite difference methods for the two-dimensional shallow water equations. J. Comput. Phys. 86, 56–74 (1990)MathSciNetMATH
13.
Zurück zum Zitat Casulli, V.: A high-resolution wetting and drying algorithm for free-surface hydrodynamics. Int. J. Numer. Methods Fluids 60, 391–408 (2009)MathSciNetMATH Casulli, V.: A high-resolution wetting and drying algorithm for free-surface hydrodynamics. Int. J. Numer. Methods Fluids 60, 391–408 (2009)MathSciNetMATH
14.
Zurück zum Zitat Casulli, V.: A semi-implicit numerical method for the free-surface Navier–Stokes equations. Int. J. Numer. Methods Fluids 74, 605–622 (2014)MathSciNet Casulli, V.: A semi-implicit numerical method for the free-surface Navier–Stokes equations. Int. J. Numer. Methods Fluids 74, 605–622 (2014)MathSciNet
15.
Zurück zum Zitat Casulli, V., Cattani, E.: Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput. Math. Appl. 27(4), 99–112 (1994)MathSciNetMATH Casulli, V., Cattani, E.: Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput. Math. Appl. 27(4), 99–112 (1994)MathSciNetMATH
16.
Zurück zum Zitat Casulli, V., Cheng, R.T.: Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Methods Fluids 15, 629–648 (1992)MATH Casulli, V., Cheng, R.T.: Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Methods Fluids 15, 629–648 (1992)MATH
17.
Zurück zum Zitat Casulli, V., Dumbser, M., Toro, E.F.: Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems. Int. J. Numer. Methods Biomed. Eng. 28, 257–272 (2012)MathSciNetMATH Casulli, V., Dumbser, M., Toro, E.F.: Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems. Int. J. Numer. Methods Biomed. Eng. 28, 257–272 (2012)MathSciNetMATH
18.
Zurück zum Zitat Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4(11), 1001–1012 (1984)MATH Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4(11), 1001–1012 (1984)MATH
19.
Zurück zum Zitat Casulli, V., Stelling, S.: Semi-implicit subgrid modelling of three-dimensional free-surface flows. Int. J. Numer. Methods Fluids 67, 441–449 (2010)MathSciNetMATH Casulli, V., Stelling, S.: Semi-implicit subgrid modelling of three-dimensional free-surface flows. Int. J. Numer. Methods Fluids 67, 441–449 (2010)MathSciNetMATH
20.
Zurück zum Zitat Casulli, V., Walters, R.A.: An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 32, 331–348 (2000)MATH Casulli, V., Walters, R.A.: An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 32, 331–348 (2000)MATH
21.
Zurück zum Zitat Casulli, V., Zanolli, P.: A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form. SIAM J. Sci. Comput. 32, 2255–2273 (2009)MathSciNetMATH Casulli, V., Zanolli, P.: A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form. SIAM J. Sci. Comput. 32, 2255–2273 (2009)MathSciNetMATH
22.
Zurück zum Zitat Casulli, V., Zanolli, P.: Iterative solutions of mildly nonlinear systems. J. Comput. Appl. Math. 236, 3937–3947 (2012)MathSciNetMATH Casulli, V., Zanolli, P.: Iterative solutions of mildly nonlinear systems. J. Comput. Appl. Math. 236, 3937–3947 (2012)MathSciNetMATH
23.
Zurück zum Zitat Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws: multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)MathSciNetMATH Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws: multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)MathSciNetMATH
24.
Zurück zum Zitat Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetMATH Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetMATH
25.
Zurück zum Zitat Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90 (1989)MathSciNetMATH Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90 (1989)MathSciNetMATH
26.
Zurück zum Zitat Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
27.
Zurück zum Zitat Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Modell. Numer. Anal. 25, 337–361 (1991)MATH Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Modell. Numer. Anal. 25, 337–361 (1991)MATH
28.
Zurück zum Zitat Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetMATH Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetMATH
29.
Zurück zum Zitat Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64(Supplement C), 43–63 (2012)MathSciNetMATH Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64(Supplement C), 43–63 (2012)MathSciNetMATH
30.
Zurück zum Zitat Diot, S., Loubère, R., Clain, S.: The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73(4), 362–392 (2013)MathSciNet Diot, S., Loubère, R., Clain, S.: The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73(4), 362–392 (2013)MathSciNet
31.
Zurück zum Zitat Dolejsi, V., Feistauer, M.: A semi-implicit discontinuous Galerkin method for the numerical solution of inviscid compressible flows. J. Comput. Phys. 198, 727–746 (2004)MathSciNetMATH Dolejsi, V., Feistauer, M.: A semi-implicit discontinuous Galerkin method for the numerical solution of inviscid compressible flows. J. Comput. Phys. 198, 727–746 (2004)MathSciNetMATH
32.
Zurück zum Zitat Dumbser, M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations. Comput. Fluids 39(1), 60–76 (2010)MathSciNetMATH Dumbser, M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations. Comput. Fluids 39(1), 60–76 (2010)MathSciNetMATH
33.
Zurück zum Zitat Dumbser, M., Balsara, D.S., Tavelli, M., Fambri, F.: A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics. Int. J. Numer. Methods Fluids 89, 16–42 (2018)MathSciNet Dumbser, M., Balsara, D.S., Tavelli, M., Fambri, F.: A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics. Int. J. Numer. Methods Fluids 89, 16–42 (2018)MathSciNet
34.
Zurück zum Zitat Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)MathSciNetMATH Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)MathSciNetMATH
35.
Zurück zum Zitat Dumbser, M., Casulli, V.: A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations. Appl. Math. Comput. 219(15), 8057–8077 (2013)MathSciNetMATH Dumbser, M., Casulli, V.: A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations. Appl. Math. Comput. 219(15), 8057–8077 (2013)MathSciNetMATH
36.
Zurück zum Zitat Dumbser, M., Casulli, V.: A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state. Appl. Math. Comput. 272, 479–497 (2016)MathSciNetMATH Dumbser, M., Casulli, V.: A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state. Appl. Math. Comput. 272, 479–497 (2016)MathSciNetMATH
37.
Zurück zum Zitat Dumbser, M., Iben, U., Ioriatti, M.: An efficient semi-implicit finite volume method for axially symmetric compressible flows in compliant tubes. Appl. Numer. Math. 89, 24–44 (2015)MathSciNetMATH Dumbser, M., Iben, U., Ioriatti, M.: An efficient semi-implicit finite volume method for axially symmetric compressible flows in compliant tubes. Appl. Numer. Math. 89, 24–44 (2015)MathSciNetMATH
38.
Zurück zum Zitat Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007)MathSciNetMATH Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007)MathSciNetMATH
39.
Zurück zum Zitat Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys. 319(Supplement C), 163–199 (2016)MathSciNetMATH Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys. 319(Supplement C), 163–199 (2016)MathSciNetMATH
40.
Zurück zum Zitat Dumbser, M., Munz, C.D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27, 215–230 (2006)MathSciNetMATH Dumbser, M., Munz, C.D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27, 215–230 (2006)MathSciNetMATH
41.
Zurück zum Zitat Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)MathSciNetMATH Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)MathSciNetMATH
42.
Zurück zum Zitat Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)MathSciNetMATH Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)MathSciNetMATH
43.
Zurück zum Zitat Dumbser, Michael, Hidalgo, Arturo, Zanotti, Olindo: High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 268, 359–387 (2014)MathSciNetMATH Dumbser, Michael, Hidalgo, Arturo, Zanotti, Olindo: High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 268, 359–387 (2014)MathSciNetMATH
44.
Zurück zum Zitat Fambri, F., Dumbser, M.: Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier–Stokes equations on staggered Cartesian grids. Appl. Numer. Math. 110, 41–74 (2016)MathSciNetMATH Fambri, F., Dumbser, M.: Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier–Stokes equations on staggered Cartesian grids. Appl. Numer. Math. 110, 41–74 (2016)MathSciNetMATH
45.
Zurück zum Zitat Fambri, F., Dumbser, M.: Semi-implicit discontinuous Galerkin methods for the incompressible Navier–Stokes equations on adaptive staggered Cartesian grids. Comput. Methods Appl. Mech. Eng. 324, 170–203 (2017)MathSciNetMATH Fambri, F., Dumbser, M.: Semi-implicit discontinuous Galerkin methods for the incompressible Navier–Stokes equations on adaptive staggered Cartesian grids. Comput. Methods Appl. Mech. Eng. 324, 170–203 (2017)MathSciNetMATH
46.
Zurück zum Zitat Fambri, F., Dumbser, M., Casulli, V.: An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels. Int. J. Numer. Methods Biomed. Eng. 30, 1170–1198 (2014)MathSciNet Fambri, F., Dumbser, M., Casulli, V.: An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels. Int. J. Numer. Methods Biomed. Eng. 30, 1170–1198 (2014)MathSciNet
47.
Zurück zum Zitat Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space–time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34(3), 260–286 (2008)MathSciNetMATH Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space–time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34(3), 260–286 (2008)MathSciNetMATH
48.
Zurück zum Zitat Gassner, G., Lörcher, F., Munz, C.D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049–1063 (2007)MathSciNetMATH Gassner, G., Lörcher, F., Munz, C.D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224, 1049–1063 (2007)MathSciNetMATH
49.
Zurück zum Zitat Godunov, S.K.: Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math. USSR Sb. 47, 271–306 (1959)MATH Godunov, S.K.: Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Math. USSR Sb. 47, 271–306 (1959)MATH
50.
Zurück zum Zitat Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)MathSciNetMATH Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)MathSciNetMATH
51.
Zurück zum Zitat Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: method formulation. Int. J. Numer. Anal. Model. 3, 1–20 (2006)MathSciNetMATH Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: method formulation. Int. J. Numer. Anal. Model. 3, 1–20 (2006)MathSciNetMATH
52.
Zurück zum Zitat Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)MathSciNetMATH Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)MathSciNetMATH
53.
Zurück zum Zitat Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)MathSciNetMATH Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)MathSciNetMATH
54.
Zurück zum Zitat Ioriatti, M., Dumbser, M.: Semi-implicit staggered discontinuous Galerkin schemes for axially symmetric viscous compressible flows in elastic tubes. Comput. Fluids 167, 166–179 (2018)MathSciNetMATH Ioriatti, M., Dumbser, M.: Semi-implicit staggered discontinuous Galerkin schemes for axially symmetric viscous compressible flows in elastic tubes. Comput. Fluids 167, 166–179 (2018)MathSciNetMATH
55.
Zurück zum Zitat Ioriatti, M., Dumbser, M.: A posteriori sub-cell finite volume limiting of staggered semi-implicit discontinuous Galerkin schemes for the shallow water equations. Appl. Numer. Math. 135, 443–480 (2019)MathSciNetMATH Ioriatti, M., Dumbser, M.: A posteriori sub-cell finite volume limiting of staggered semi-implicit discontinuous Galerkin schemes for the shallow water equations. Appl. Numer. Math. 135, 443–480 (2019)MathSciNetMATH
56.
Zurück zum Zitat Ioriatti, M., Dumbser, M., Iben, U.: A comparison of explicit and semi-implicit finite volume schemes for viscous compressible flows in elastic pipes in fast transient regime. Zeitschrift fuer Angewandte Mathematik und Mechanik 97, 1358–1380 (2017)MathSciNet Ioriatti, M., Dumbser, M., Iben, U.: A comparison of explicit and semi-implicit finite volume schemes for viscous compressible flows in elastic pipes in fast transient regime. Zeitschrift fuer Angewandte Mathematik und Mechanik 97, 1358–1380 (2017)MathSciNet
57.
Zurück zum Zitat Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetMATH Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)MathSciNetMATH
58.
Zurück zum Zitat Käser, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. J. Comput. Phys. 205(2), 486–508 (2005)MathSciNetMATH Käser, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. J. Comput. Phys. 205(2), 486–508 (2005)MathSciNetMATH
59.
Zurück zum Zitat Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)MathSciNetMATH Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)MathSciNetMATH
60.
Zurück zum Zitat Kramer, S.C., Stelling, G.S.: A conservative unstructured scheme for rapidly varied flows. Int. J. Numer. Methods Fluids 58, 183–212 (2008)MathSciNetMATH Kramer, S.C., Stelling, G.S.: A conservative unstructured scheme for rapidly varied flows. Int. J. Numer. Methods Fluids 58, 183–212 (2008)MathSciNetMATH
61.
Zurück zum Zitat Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetMATH Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetMATH
62.
Zurück zum Zitat Lax, Peter, Wendroff, Burton: Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 (1960)MATH Lax, Peter, Wendroff, Burton: Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 (1960)MATH
63.
Zurück zum Zitat Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007)MathSciNetMATH Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007)MathSciNetMATH
64.
Zurück zum Zitat Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: L2-stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. Math. Model. Numer. Anal. 42, 593–607 (2008)MathSciNetMATH Liu, Y.J., Shu, C.W., Tadmor, E., Zhang, M.: L2-stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. Math. Model. Numer. Anal. 42, 593–607 (2008)MathSciNetMATH
65.
Zurück zum Zitat Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16(3), 718–763 (2014)MathSciNetMATH Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16(3), 718–763 (2014)MathSciNetMATH
66.
Zurück zum Zitat Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)MathSciNetMATH Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)MathSciNetMATH
67.
Zurück zum Zitat Park, J.H., Munz, C.D.: Multiple pressure variables methods for fluid flow at all Mach numbers. Int. J. Numer. Methods Fluids 49, 905–931 (2005)MathSciNetMATH Park, J.H., Munz, C.D.: Multiple pressure variables methods for fluid flow at all Mach numbers. Int. J. Numer. Methods Fluids 49, 905–931 (2005)MathSciNetMATH
68.
Zurück zum Zitat Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28, 85–104 (2016)MathSciNetMATH Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28, 85–104 (2016)MathSciNetMATH
69.
Zurück zum Zitat Qiu, J., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)MathSciNetMATH Qiu, J., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)MathSciNetMATH
70.
Zurück zum Zitat Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
71.
Zurück zum Zitat Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)MathSciNetMATH Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)MathSciNetMATH
72.
Zurück zum Zitat Schulz-Rinne, C.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)MathSciNetMATH Schulz-Rinne, C.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)MathSciNetMATH
73.
Zurück zum Zitat Sod, Gary A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetMATH Sod, Gary A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetMATH
74.
Zurück zum Zitat Stelling, G.S., Duynmeyer, S.P.A.: A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43, 1329–1354 (2003)MathSciNetMATH Stelling, G.S., Duynmeyer, S.P.A.: A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43, 1329–1354 (2003)MathSciNetMATH
75.
Zurück zum Zitat Tavelli, M., Dumbser, M.: A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes. Appl. Math. Comput. 234, 623–644 (2014)MathSciNetMATH Tavelli, M., Dumbser, M.: A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes. Appl. Math. Comput. 234, 623–644 (2014)MathSciNetMATH
76.
Zurück zum Zitat Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations. Appl. Math. Comput. 248, 70–92 (2014)MathSciNetMATH Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations. Appl. Math. Comput. 248, 70–92 (2014)MathSciNetMATH
77.
Zurück zum Zitat Tavelli, M., Dumbser, M.: A staggered space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations on two-dimensional triangular meshes. Comput. Fluids 119, 235–249 (2015)MathSciNetMATH Tavelli, M., Dumbser, M.: A staggered space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations on two-dimensional triangular meshes. Comput. Fluids 119, 235–249 (2015)MathSciNetMATH
78.
Zurück zum Zitat Tavelli, M., Dumbser, M.: A staggered space–time discontinuous Galerkin method for the three-dimensional incompressible Navier–Stokes equations on unstructured tetrahedral meshes. J. Comput. Phys. 319, 294–323 (2016)MathSciNetMATH Tavelli, M., Dumbser, M.: A staggered space–time discontinuous Galerkin method for the three-dimensional incompressible Navier–Stokes equations on unstructured tetrahedral meshes. J. Comput. Phys. 319, 294–323 (2016)MathSciNetMATH
79.
Zurück zum Zitat Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017)MathSciNetMATH Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017)MathSciNetMATH
80.
Zurück zum Zitat Tavelli, M., Dumbser, M.: Arbitrary high order accurate space–time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys. 366, 386–414 (2018)MathSciNetMATH Tavelli, M., Dumbser, M.: Arbitrary high order accurate space–time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys. 366, 386–414 (2018)MathSciNetMATH
81.
Zurück zum Zitat Tavelli, M., Dumbser, M., Casulli, V.: High resolution methods for scalar transport problems in compliant systems of arteries. Appl. Numer. Math. 74, 62–82 (2013)MathSciNetMATH Tavelli, M., Dumbser, M., Casulli, V.: High resolution methods for scalar transport problems in compliant systems of arteries. Appl. Numer. Math. 74, 62–82 (2013)MathSciNetMATH
82.
Zurück zum Zitat Toro, E.F.: Riemann Sovlers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009) Toro, E.F.: Riemann Sovlers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)
83.
Zurück zum Zitat Toro, E.F., Vázquez-Cendón, M.E.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012)MathSciNetMATH Toro, E.F., Vázquez-Cendón, M.E.: Flux splitting schemes for the Euler equations. Comput. Fluids 70, 1–12 (2012)MathSciNetMATH
84.
Zurück zum Zitat Tumolo, G., Bonaventura, L.: A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction. Q. J. R. Meteorol. Soc. 141(692), 2582–2601 (2015) Tumolo, G., Bonaventura, L.: A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction. Q. J. R. Meteorol. Soc. 141(692), 2582–2601 (2015)
85.
Zurück zum Zitat Tumolo, G., Bonaventura, L., Restelli, M.: A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations. J. Comput. Phys. 232, 46–67 (2013)MathSciNetMATH Tumolo, G., Bonaventura, L., Restelli, M.: A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations. J. Comput. Phys. 232, 46–67 (2013)MathSciNetMATH
86.
Zurück zum Zitat van der Vegt, J.J.W., van der Ven, H.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. General formulation. J. Comput. Phys. 182(2), 546–585 (2002)MathSciNetMATH van der Vegt, J.J.W., van der Ven, H.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. General formulation. J. Comput. Phys. 182(2), 546–585 (2002)MathSciNetMATH
87.
Zurück zum Zitat van der Ven, H., van der Vegt, J.J.W.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: II. Efficient flux quadrature. Comput. Methods Appl. Mech. Eng. 191(41), 4747–4780 (2002)MathSciNetMATH van der Ven, H., van der Vegt, J.J.W.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: II. Efficient flux quadrature. Comput. Methods Appl. Mech. Eng. 191(41), 4747–4780 (2002)MathSciNetMATH
88.
Zurück zum Zitat van Leer, B.: Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)MATH van Leer, B.: Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)MATH
89.
Zurück zum Zitat Zanotti, O., Dumbser, M., Fambri, F.: Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement. Mon. Not. R. Astron. Soc. 452, 3010–3029 (2015) Zanotti, O., Dumbser, M., Fambri, F.: Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement. Mon. Not. R. Astron. Soc. 452, 3010–3029 (2015)
90.
Zurück zum Zitat Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204–224 (2015)MathSciNetMATH Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204–224 (2015)MathSciNetMATH
Metadaten
Titel
A Staggered Semi-implicit Discontinuous Galerkin Scheme with a Posteriori Subcell Finite Volume Limiter for the Euler Equations of Gasdynamics
verfasst von
Matteo Ioriatti
Michael Dumbser
Raphaël Loubère
Publikationsdatum
01.05.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01209-w

Weitere Artikel der Ausgabe 2/2020

Journal of Scientific Computing 2/2020 Zur Ausgabe

Premium Partner