Skip to main content
Erschienen in: Fire Technology 6/2022

02.09.2022

A Theoretical Model to Understand Some Aspects of Firebrand Pile Burning

verfasst von: Brian Y. Lattimer, Steven Wong, Jonathan Hodges

Erschienen in: Fire Technology | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Firebrand piles are known to ignite combustible infrastructure resulting in significant damage; however, the parameters that impact the heat transfer from firebrand piles to a combustible surface are not well understood. Heat transfer from a firebrand pile is directly related to the local firebrand temperatures which can vary significantly due to changes in the burning behavior. A two-phase flow analytical model was developed that includes time varying firebrand diameter, reradiation effects between firebrands, gas temperature and species evolution, and pile porosity effects. The analytical model was used to quantify the temperature of cylindrical firebrands and explore the effects of changing firebrand diameter, firebrand aspect ratio (pile porosity), gas velocity, and local oxygen mass fraction. All of these parameters were found to impact firebrand temperatures. Firebrand pile porosity has a significant impact on the velocity within the pile, with a decrease in pile porosity resulting in lower velocities and lower firebrand temperatures. The modeling results were used to explain the trends in heat transfer measured for firebrand piles on a horizontal plate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Manzello SL, Suzuki S, Gollner MJ, Fernandez-Pello AC (2020) Role of firebrand combustion in large outdoor fire spread. Prog Energy Combust Sci 76:100801CrossRef Manzello SL, Suzuki S, Gollner MJ, Fernandez-Pello AC (2020) Role of firebrand combustion in large outdoor fire spread. Prog Energy Combust Sci 76:100801CrossRef
2.
Zurück zum Zitat Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2017) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol 53(2):429–473CrossRef Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2017) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol 53(2):429–473CrossRef
3.
Zurück zum Zitat Dowling VP (1994) Ignition of timber bridges in bushfires. Fire Saf J 22(2):145–168CrossRef Dowling VP (1994) Ignition of timber bridges in bushfires. Fire Saf J 22(2):145–168CrossRef
4.
Zurück zum Zitat Manzello SL, Cleary TG, Shields JR, Maranghides A, Mell W, Yang JC (2008) Experimental investigation of firebrands: generation and ignition of fuel beds. Fire Saf J 43(3):226–233CrossRef Manzello SL, Cleary TG, Shields JR, Maranghides A, Mell W, Yang JC (2008) Experimental investigation of firebrands: generation and ignition of fuel beds. Fire Saf J 43(3):226–233CrossRef
5.
Zurück zum Zitat Manzello SL, Park SH, Cleary TG (2009) Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Saf J 44(6):894–900CrossRef Manzello SL, Park SH, Cleary TG (2009) Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Saf J 44(6):894–900CrossRef
6.
Zurück zum Zitat Hakes RSP, Salehizadeh H, Weston-dawkes MJ, Gollner MJ (2019) Thermal characterization of firebrand piles. Fire Saf J 104:34–42CrossRef Hakes RSP, Salehizadeh H, Weston-dawkes MJ, Gollner MJ (2019) Thermal characterization of firebrand piles. Fire Saf J 104:34–42CrossRef
7.
Zurück zum Zitat Manzello SL, Suzuki S (2014) Exposing decking assemblies to continuous wind-driven firebrand showers. Fire Saf Sci 11:1339–1352CrossRef Manzello SL, Suzuki S (2014) Exposing decking assemblies to continuous wind-driven firebrand showers. Fire Saf Sci 11:1339–1352CrossRef
8.
Zurück zum Zitat Wessies SS, Chang MK, Marr KC, Ezekoye OA (2019) Experimental and analytical characterization of firebrand ignition of home insulation materials. Fire Technol 55(3):1027–1056CrossRef Wessies SS, Chang MK, Marr KC, Ezekoye OA (2019) Experimental and analytical characterization of firebrand ignition of home insulation materials. Fire Technol 55(3):1027–1056CrossRef
9.
Zurück zum Zitat Manzello SL (2014) Enabling the investigation of structure vulnerabilities to wind-driven firebrand showers in wildland-urban interface (WUI) fires. Fire Saf Sci 11:83–96CrossRef Manzello SL (2014) Enabling the investigation of structure vulnerabilities to wind-driven firebrand showers in wildland-urban interface (WUI) fires. Fire Saf Sci 11:83–96CrossRef
10.
Zurück zum Zitat Manzello SL et al (2008) On the development and characterization of a firebrand generator. Fire Saf J 43:258–268CrossRef Manzello SL et al (2008) On the development and characterization of a firebrand generator. Fire Saf J 43:258–268CrossRef
11.
Zurück zum Zitat Manzello SL, Suzuki S (2012) The new and improved NIST Dragon ’ s LAIR (Lofting and Ignition Research) facility. Fire Mater 1:623–635CrossRef Manzello SL, Suzuki S (2012) The new and improved NIST Dragon ’ s LAIR (Lofting and Ignition Research) facility. Fire Mater 1:623–635CrossRef
12.
Zurück zum Zitat Suzuki S, Manzello SL (2019) Investigating effect of wind speeds on structural firebrand generation in laboratory scale experiments. Int J Heat Mass Transf 130:135–140CrossRef Suzuki S, Manzello SL (2019) Investigating effect of wind speeds on structural firebrand generation in laboratory scale experiments. Int J Heat Mass Transf 130:135–140CrossRef
13.
Zurück zum Zitat Manzello SL, Suzuki S, Hayashi Y (2012) Exposing siding treatments, walls fitted with eaves, and glazing assemblies to firebrand showers. Fire Saf J 50:25–34CrossRef Manzello SL, Suzuki S, Hayashi Y (2012) Exposing siding treatments, walls fitted with eaves, and glazing assemblies to firebrand showers. Fire Saf J 50:25–34CrossRef
14.
Zurück zum Zitat Suzuki S, Johnsson E, Maranghides A, Manzello SL (2016) Ignition of wood fencing assemblies exposed to continuous wind-driven firebrand showers. Fire Technol 52(4):1051–1067CrossRef Suzuki S, Johnsson E, Maranghides A, Manzello SL (2016) Ignition of wood fencing assemblies exposed to continuous wind-driven firebrand showers. Fire Technol 52(4):1051–1067CrossRef
15.
Zurück zum Zitat Tao Z, Bathras B, Kwon B, Biallas B, Gollner MJ, Yang R (2020) Effect of firebrand size and geometry on heating from a smoldering pile under wind. Fire Saf J 1:103031 Tao Z, Bathras B, Kwon B, Biallas B, Gollner MJ, Yang R (2020) Effect of firebrand size and geometry on heating from a smoldering pile under wind. Fire Saf J 1:103031
16.
Zurück zum Zitat Bearinger E, Lattimer B, Hodges J, Rippe C, Kapahi A (2021) Statistical assessment of parameters affecting firebrand pile heat transfer to surfaces. Front Mech Eng 7:62CrossRef Bearinger E, Lattimer B, Hodges J, Rippe C, Kapahi A (2021) Statistical assessment of parameters affecting firebrand pile heat transfer to surfaces. Front Mech Eng 7:62CrossRef
17.
Zurück zum Zitat Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildl Fire 19(7):818–843CrossRef Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildl Fire 19(7):818–843CrossRef
18.
Zurück zum Zitat Turns S (2000) An introduction to combustion: concepts and applications, 2nd edn. McGraw Hill, London Turns S (2000) An introduction to combustion: concepts and applications, 2nd edn. McGraw Hill, London
19.
Zurück zum Zitat Baum HR, Atreya A (2014) A model for combustion of firebrands of various shapes. Fire Saf Sci 11:1353–1367CrossRef Baum HR, Atreya A (2014) A model for combustion of firebrands of various shapes. Fire Saf Sci 11:1353–1367CrossRef
20.
Zurück zum Zitat Chaos M, Khan MM, Dorofeev SB (2013) Pyrolysis of corrugated cardboard in inert and oxidative environments. Proc Combust Inst 34(2):2583–2590CrossRef Chaos M, Khan MM, Dorofeev SB (2013) Pyrolysis of corrugated cardboard in inert and oxidative environments. Proc Combust Inst 34(2):2583–2590CrossRef
21.
Zurück zum Zitat Anca-Couce A, Zobel N, Berger A, Behrendt F (2012) Smouldering of pine wood: kinetics and reaction heats. Combust Flame 159(4):1708–1719CrossRef Anca-Couce A, Zobel N, Berger A, Behrendt F (2012) Smouldering of pine wood: kinetics and reaction heats. Combust Flame 159(4):1708–1719CrossRef
22.
Zurück zum Zitat Hurt RH, Mitchell RE (1992) On the combustion kinetics of heterogeneous char particle populations. In: Twenty-fourth symposium on combustion, pp 1233–1241 Hurt RH, Mitchell RE (1992) On the combustion kinetics of heterogeneous char particle populations. In: Twenty-fourth symposium on combustion, pp 1233–1241
23.
Zurück zum Zitat Weng WG, Hasemi Y, Fan WC (2006) Predicting the pyrolysis of wood considering char oxidation under different ambient oxygen concentrations. Combust Flame 145(4):723–729CrossRef Weng WG, Hasemi Y, Fan WC (2006) Predicting the pyrolysis of wood considering char oxidation under different ambient oxygen concentrations. Combust Flame 145(4):723–729CrossRef
24.
Zurück zum Zitat Lattimer BY, Bearinger E, Wong S, Hodges JL (2022) Evaluation of models and important parameters for firebrand burning. Combust Flame 235:111619CrossRef Lattimer BY, Bearinger E, Wong S, Hodges JL (2022) Evaluation of models and important parameters for firebrand burning. Combust Flame 235:111619CrossRef
25.
Zurück zum Zitat Monson CR, Germane GJ, Blackham AU, DouglasSmoot L (1995) Char oxidation at elevated pressures. Combust Flame 100(4):669–683CrossRef Monson CR, Germane GJ, Blackham AU, DouglasSmoot L (1995) Char oxidation at elevated pressures. Combust Flame 100(4):669–683CrossRef
26.
Zurück zum Zitat Zhou L (2018) Fundamentals of combustion theory. Elsevier, Amsterdam, pp 15–70 Zhou L (2018) Fundamentals of combustion theory. Elsevier, Amsterdam, pp 15–70
27.
Zurück zum Zitat Rogers FE, Ohlemiller TJ (1980) Cellulosic insulation material I. Overall degradation kinetics and reaction heats. Combust Sci Technol 24(3–4):129–137CrossRef Rogers FE, Ohlemiller TJ (1980) Cellulosic insulation material I. Overall degradation kinetics and reaction heats. Combust Sci Technol 24(3–4):129–137CrossRef
28.
Zurück zum Zitat Kashiwagi T, Nambu H (1992) Global kinetic constants for thermal oxidative degradation of a cellulosic paper. Combust Flame 88(3–4):345–368CrossRef Kashiwagi T, Nambu H (1992) Global kinetic constants for thermal oxidative degradation of a cellulosic paper. Combust Flame 88(3–4):345–368CrossRef
29.
Zurück zum Zitat Incopera F, DeWitt D (1990) Fundamentals of heat and mass transfer, 3rd edn. Wiley, London Incopera F, DeWitt D (1990) Fundamentals of heat and mass transfer, 3rd edn. Wiley, London
30.
Zurück zum Zitat Barr BW, Ezekoye OA (2013) Thermo-mechanical modeling of firebrand breakage on a fractal tree. Proc Combust Inst 34(2):2649–2656CrossRef Barr BW, Ezekoye OA (2013) Thermo-mechanical modeling of firebrand breakage on a fractal tree. Proc Combust Inst 34(2):2649–2656CrossRef
31.
Zurück zum Zitat Zou RP, Yu AB (1996) Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Technol 88:71–79CrossRef Zou RP, Yu AB (1996) Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Technol 88:71–79CrossRef
32.
Zurück zum Zitat Zhang C, Gao J, Zeng L, Xia Y, Xie W, Ye W (2020) Experimental analysis of the resistance of packed beds based on the morphology of cylinder. Powder Technol 369:238–247CrossRef Zhang C, Gao J, Zeng L, Xia Y, Xie W, Ye W (2020) Experimental analysis of the resistance of packed beds based on the morphology of cylinder. Powder Technol 369:238–247CrossRef
33.
Zurück zum Zitat Cholewa N, Summers PT, Feih S, Mouritz AP, Lattimer BY, Case SW (2016) A technique for coupled thermomechanical response measurement using infrared thermography and digital image correlation (TDIC). Exp Mech 56:145–164CrossRef Cholewa N, Summers PT, Feih S, Mouritz AP, Lattimer BY, Case SW (2016) A technique for coupled thermomechanical response measurement using infrared thermography and digital image correlation (TDIC). Exp Mech 56:145–164CrossRef
34.
Zurück zum Zitat Rippe CM, Lattimer BY (2015) Full-field surface heat flux measurement using non-intrusive infrared thermography. Fire Saf J 78:238–250CrossRef Rippe CM, Lattimer BY (2015) Full-field surface heat flux measurement using non-intrusive infrared thermography. Fire Saf J 78:238–250CrossRef
35.
Zurück zum Zitat Bearinger ED, Hodges JL, Yang F, Rippe CM, Lattimer BY (2021) Localized heat transfer from firebrands to surfaces. Fire Saf J 120:1–10CrossRef Bearinger ED, Hodges JL, Yang F, Rippe CM, Lattimer BY (2021) Localized heat transfer from firebrands to surfaces. Fire Saf J 120:1–10CrossRef
36.
Zurück zum Zitat Bearinger E, Lattimer B, Hodges J, Rippe C (2020) Measuring heat transfer from firebrands to surfaces. In: Proceeding of ASME 2020 heat transfer summer conference HT2020-9165, July 13–15, pp 1–9 Bearinger E, Lattimer B, Hodges J, Rippe C (2020) Measuring heat transfer from firebrands to surfaces. In: Proceeding of ASME 2020 heat transfer summer conference HT2020-9165, July 13–15, pp 1–9
37.
Zurück zum Zitat Howell JR, Menguc MP (2011) A catalog of radiation heat transfer configuration factors. J Quant Spectros Radiat Transf 112(5):910–912CrossRef Howell JR, Menguc MP (2011) A catalog of radiation heat transfer configuration factors. J Quant Spectros Radiat Transf 112(5):910–912CrossRef
38.
Zurück zum Zitat Urban JL, Fernandez-pello AC, Vicariotto M, Dunn-Rankin D (2019) Temperature measurement of glowing embers with color pyrometry. Fire Technol 55(3):1013–1026CrossRef Urban JL, Fernandez-pello AC, Vicariotto M, Dunn-Rankin D (2019) Temperature measurement of glowing embers with color pyrometry. Fire Technol 55(3):1013–1026CrossRef
39.
Zurück zum Zitat Manzello SL, Maranghides A (2007) Measurement of firebrand production and heat release rate (HRR) from burning Korean pine trees. Fire Saf Sci 7:108–116 Manzello SL, Maranghides A (2007) Measurement of firebrand production and heat release rate (HRR) from burning Korean pine trees. Fire Saf Sci 7:108–116
Metadaten
Titel
A Theoretical Model to Understand Some Aspects of Firebrand Pile Burning
verfasst von
Brian Y. Lattimer
Steven Wong
Jonathan Hodges
Publikationsdatum
02.09.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2022
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01303-5

Weitere Artikel der Ausgabe 6/2022

Fire Technology 6/2022 Zur Ausgabe