Skip to main content
Erschienen in: Journal of Materials Science 7/2018

18.12.2017 | Biomaterials

A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering

verfasst von: Juhong Yu, Hong Xia, Qing-Qing Ni

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is known that scaffold is a key factor in bone tissue engineering. The aim of this study was to improve the design of scaffold in order to achieve an effect of precisely matching the irregular boundaries of bone defects as well as facilitate clinical application. In this study, controllable three-dimensional porous shape memory polyurethane/nano-hydroxyapatite composite scaffolds were successfully fabricated. Detailed studies were performed to evaluate its structure, porosities, and mechanical properties, emphasizing the effect of different apertures of scaffolds on shape recovery behaviors and biological performance in vitro. Results showed its compression recovery ratios and shape recovery ratios of all scaffolds could reach more than 99 and 90%, respectively, which could let it more accurately match the irregular boundaries of bone defects. And also its cell proliferation ability was improved with the increase in the apertures. Thus, these scaffolds have potential applications for the bone tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416CrossRef Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416CrossRef
2.
Zurück zum Zitat Nukavarapu SP, Kumbar SG, Brown JL et al (2008) Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromol 9:1818–1825CrossRef Nukavarapu SP, Kumbar SG, Brown JL et al (2008) Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromol 9:1818–1825CrossRef
3.
Zurück zum Zitat Morozowich NL, Nichol JL, Allcock HR (2012) Investigation of apatite mineralization on antioxidant polyphosphazenes for bone tissue engineering. Chem Mater 24:3500–3509CrossRef Morozowich NL, Nichol JL, Allcock HR (2012) Investigation of apatite mineralization on antioxidant polyphosphazenes for bone tissue engineering. Chem Mater 24:3500–3509CrossRef
4.
5.
Zurück zum Zitat Bab I, Ashton BA, Gazit D, Marx G, Williamson MC, Owen ME (1986) Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 84:139–151 Bab I, Ashton BA, Gazit D, Marx G, Williamson MC, Owen ME (1986) Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 84:139–151
6.
Zurück zum Zitat Hofmann S, Hagenmüller H, Koch AM, Müller R, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L (2007) Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28:1152–1162CrossRef Hofmann S, Hagenmüller H, Koch AM, Müller R, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L (2007) Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28:1152–1162CrossRef
7.
Zurück zum Zitat Zhang Y, Wu C, Friis T, Xiao Y (2010) The osteogenic properties of CaP/silk composite scaffolds. Biomaterials 31:2848–2856CrossRef Zhang Y, Wu C, Friis T, Xiao Y (2010) The osteogenic properties of CaP/silk composite scaffolds. Biomaterials 31:2848–2856CrossRef
8.
Zurück zum Zitat Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32:2812–2820CrossRef Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32:2812–2820CrossRef
9.
Zurück zum Zitat Kasuga T, Fujikawa H, Abe Y (1999) Preparation of polylactic acid composites containing β-Ca(PO3)2 fibers. J Mater Res 14:418–424CrossRef Kasuga T, Fujikawa H, Abe Y (1999) Preparation of polylactic acid composites containing β-Ca(PO3)2 fibers. J Mater Res 14:418–424CrossRef
10.
Zurück zum Zitat Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic Characteristics. Biomaterials 20:859–877CrossRef Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic Characteristics. Biomaterials 20:859–877CrossRef
11.
Zurück zum Zitat Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23CrossRef Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23CrossRef
12.
Zurück zum Zitat Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, New York Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, New York
13.
Zurück zum Zitat Ota S (1981) Current status of irradiated heat-shrinkable tubing in Japan. Rad Phys Chem 18:81–87 Ota S (1981) Current status of irradiated heat-shrinkable tubing in Japan. Rad Phys Chem 18:81–87
14.
Zurück zum Zitat El Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4:91–104CrossRef El Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4:91–104CrossRef
15.
Zurück zum Zitat Metcalfe A, Desfaits AC, Salazkin I, Yahia L, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497CrossRef Metcalfe A, Desfaits AC, Salazkin I, Yahia L, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497CrossRef
16.
Zurück zum Zitat Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices 4:89–96CrossRef Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevices 4:89–96CrossRef
17.
Zurück zum Zitat Gall K, Kreiner P, Turner D, Hulse M (2004) Shape memory polymers for microelectromechanical systems. J MEMS 13:472–483CrossRef Gall K, Kreiner P, Turner D, Hulse M (2004) Shape memory polymers for microelectromechanical systems. J MEMS 13:472–483CrossRef
18.
Zurück zum Zitat Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2003) Shape memory polymer nano composites. Acta Mater 50:5115–5126CrossRef Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2003) Shape memory polymer nano composites. Acta Mater 50:5115–5126CrossRef
19.
Zurück zum Zitat Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef
20.
Zurück zum Zitat Zhao XB, Du L, Zhang XP (2001) Brief Review of relations of structure and microphase separation of polyurethane. Polyurethane Ind 16:4–8 Zhao XB, Du L, Zhang XP (2001) Brief Review of relations of structure and microphase separation of polyurethane. Polyurethane Ind 16:4–8
21.
Zurück zum Zitat Zhu CC, Weng HY, Lyu GH, Zhang JL (2012) The latest development status of polyurethane industry at home and abroad. Chem Propellants Polym Mater 5:1–20 Zhu CC, Weng HY, Lyu GH, Zhang JL (2012) The latest development status of polyurethane industry at home and abroad. Chem Propellants Polym Mater 5:1–20
22.
Zurück zum Zitat Li B, Zhang HL, Li ZH, Bao JJ, Xu GW (2008) Research progress and application of polyurethane materials in biological field. Polyurethane 4:96–100 Li B, Zhang HL, Li ZH, Bao JJ, Xu GW (2008) Research progress and application of polyurethane materials in biological field. Polyurethane 4:96–100
23.
Zurück zum Zitat Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRef Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRef
24.
Zurück zum Zitat Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRef Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRef
25.
Zurück zum Zitat Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A (2006) Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release 110:260–265CrossRef Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A (2006) Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release 110:260–265CrossRef
26.
Zurück zum Zitat Itokazu M, Yang W, Aoki T, Ohara A, Kato N (1998) Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials 19:817–819CrossRef Itokazu M, Yang W, Aoki T, Ohara A, Kato N (1998) Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials 19:817–819CrossRef
27.
Zurück zum Zitat Soriano I, Évora C (2000) Formulation of calcium phosphates/poly (d, l-lactide) blends containing gentamicin for bone implantation. J Control Release 68:121–134CrossRef Soriano I, Évora C (2000) Formulation of calcium phosphates/poly (d, l-lactide) blends containing gentamicin for bone implantation. J Control Release 68:121–134CrossRef
28.
Zurück zum Zitat Komlev VS, Barinov SM, Koplik EV (2002) A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials 23:3449–3454CrossRef Komlev VS, Barinov SM, Koplik EV (2002) A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials 23:3449–3454CrossRef
29.
Zurück zum Zitat Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29:4341–4347CrossRef Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29:4341–4347CrossRef
30.
Zurück zum Zitat Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, Hamada Y, Takahashi J (2004) Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 25:3807–3812CrossRef Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, Hamada Y, Takahashi J (2004) Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 25:3807–3812CrossRef
31.
Zurück zum Zitat Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S (2001) Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 22:1643–1651CrossRef Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S (2001) Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 22:1643–1651CrossRef
32.
Zurück zum Zitat Yu JH, Chu XB, Cai YR, Tong PJ, Yao JM (2014) Preparation and characterization of antimicrobial nano-hydroxyapatite composites. Mater Sci Eng, C 37:54–59CrossRef Yu JH, Chu XB, Cai YR, Tong PJ, Yao JM (2014) Preparation and characterization of antimicrobial nano-hydroxyapatite composites. Mater Sci Eng, C 37:54–59CrossRef
33.
Zurück zum Zitat Yu JH, Xia H, Teramoto A, Ni QQ (2017) Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering. J Biomed Mater Res A 105:1132–1137CrossRef Yu JH, Xia H, Teramoto A, Ni QQ (2017) Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering. J Biomed Mater Res A 105:1132–1137CrossRef
34.
Zurück zum Zitat Li GQ, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68:3337–3343CrossRef Li GQ, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68:3337–3343CrossRef
35.
Zurück zum Zitat Ni QQ, Zhang CS, Fu YQ, Dai GZ, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184CrossRef Ni QQ, Zhang CS, Fu YQ, Dai GZ, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184CrossRef
Metadaten
Titel
A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering
verfasst von
Juhong Yu
Hong Xia
Qing-Qing Ni
Publikationsdatum
18.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1807-x

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.