Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2013

01.07.2013 | Research Paper

A time-dependent model to determine the thermal conductivity of a nanofluid

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312CrossRef Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312CrossRef
Zurück zum Zitat Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34:210–216CrossRef Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34:210–216CrossRef
Zurück zum Zitat Das SK, Choi SU, Yu W, Pradeep T (2008) Nanofluids: science and technology. Wiley ,Hoboken Das SK, Choi SU, Yu W, Pradeep T (2008) Nanofluids: science and technology. Wiley ,Hoboken
Zurück zum Zitat Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRef Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRef
Zurück zum Zitat Eastman JA, Choi SUS, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 78:6, 718–720CrossRef Eastman JA, Choi SUS, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 78:6, 718–720CrossRef
Zurück zum Zitat Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1:187–191CrossRef Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1:187–191CrossRef
Zurück zum Zitat Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8:36CrossRef Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8:36CrossRef
Zurück zum Zitat Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Trans 45:855863CrossRef Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Trans 45:855863CrossRef
Zurück zum Zitat Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over?. J Nanopart Res 10:1089–1097CrossRef Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over?. J Nanopart Res 10:1089–1097CrossRef
Zurück zum Zitat Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6:229CrossRef Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6:229CrossRef
Zurück zum Zitat Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577588CrossRef Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577588CrossRef
Zurück zum Zitat Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17(2):35–40 Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17(2):35–40
Zurück zum Zitat Kwek D, Crivoi A, Duan Fei (2010) Effects of temperature and particle size on the thermal property measurements of Al2O3–water nanofluids. J Chem Eng Data 55:5690–5695CrossRef Kwek D, Crivoi A, Duan Fei (2010) Effects of temperature and particle size on the thermal property measurements of Al2O3–water nanofluids. J Chem Eng Data 55:5690–5695CrossRef
Zurück zum Zitat Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRef Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRef
Zurück zum Zitat Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids. J Appl Phys 101: 044312CrossRef Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids. J Appl Phys 101: 044312CrossRef
Zurück zum Zitat Maxwell JC (1891) A treatise on electricity and magnetism, 3rd edn. Clarendon Press, Oxford Maxwell JC (1891) A treatise on electricity and magnetism, 3rd edn. Clarendon Press, Oxford
Zurück zum Zitat Mitchell SL, Myers TG (2010a) Application of standard and refined heat balance integral methods to one-dimensional stefan problems. SIAM Rev 52(1):5786CrossRef Mitchell SL, Myers TG (2010a) Application of standard and refined heat balance integral methods to one-dimensional stefan problems. SIAM Rev 52(1):5786CrossRef
Zurück zum Zitat Mitchell SL, Myers TG (2008) Heat balance integral method for one-dimensional finite ablation. J Thermophys Heat Transf 22:(3) 508–514CrossRef Mitchell SL, Myers TG (2008) Heat balance integral method for one-dimensional finite ablation. J Thermophys Heat Transf 22:(3) 508–514CrossRef
Zurück zum Zitat Philip J, Shima PD (2012) Thermal properties of nanofluids. Adv Colliod Interface Sci 183:30–45CrossRef Philip J, Shima PD (2012) Thermal properties of nanofluids. Adv Colliod Interface Sci 183:30–45CrossRef
Zurück zum Zitat Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRef Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRef
Zurück zum Zitat Teng TP, Hung YH, Teng TC, Moa HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213–2218CrossRef Teng TP, Hung YH, Teng TC, Moa HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213–2218CrossRef
Zurück zum Zitat Tillman P, Hill JM (2007) Determination of nanolayer thickness for a nanofluid. Int Commun Heat Mass Trans 34:399–407CrossRef Tillman P, Hill JM (2007) Determination of nanolayer thickness for a nanofluid. Int Commun Heat Mass Trans 34:399–407CrossRef
Zurück zum Zitat Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203CrossRef Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203CrossRef
Zurück zum Zitat Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticlefluid mixture. J Thermophys Heat Transf 13:(4) 474–480CrossRef Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticlefluid mixture. J Thermophys Heat Transf 13:(4) 474–480CrossRef
Zurück zum Zitat Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2675CrossRef Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2675CrossRef
Zurück zum Zitat Wood DM, Ashcroft NW (1977) Effective medium theory of optical properties of small particle composites. Philos Mag 35(2):269280CrossRef Wood DM, Ashcroft NW (1977) Effective medium theory of optical properties of small particle composites. Philos Mag 35(2):269280CrossRef
Zurück zum Zitat Yoo DH, Hong KS, Hong TE, Eastman JA, Yang HS (2007) Thermal conductivity of Al2O3/water nanofluids. J Korean Phys Soc 51:S84–S87 Yoo DH, Hong KS, Hong TE, Eastman JA, Yang HS (2007) Thermal conductivity of Al2O3/water nanofluids. J Korean Phys Soc 51:S84–S87
Zurück zum Zitat Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef
Zurück zum Zitat Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanopart Res 6:355–361CrossRef Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanopart Res 6:355–361CrossRef
Zurück zum Zitat Zhou SQ, Rui N (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:093123CrossRef Zhou SQ, Rui N (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:093123CrossRef
Metadaten
Titel
A time-dependent model to determine the thermal conductivity of a nanofluid
Publikationsdatum
01.07.2013
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1775-2

Weitere Artikel der Ausgabe 7/2013

Journal of Nanoparticle Research 7/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.