Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

A Troposphere Tomography Method by Combining the Truncation Coefficient and Variance Component Analysis

verfasst von : Qingzhi Zhao, Yibin Yao, Linyang Xin

Erschienen in: China Satellite Navigation Conference (CSNC) 2018 Proceedings

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional troposphere tomography method cannot use the GNSS signals penetrating from the side face of research area, which not only decreases the utilization rate of GNSS observation but also leads to a low percentage of voxels crossed by rays. In order to overcome this issue, the GNSS signals penetrating from the model’s side face are also used to build the observation equation by introducing the truncation coefficient in this paper. Due to the fact that the tomography modeling is consists of various equations, including observation equation (using signals from the side and top faces of research area to build equations), horizontal and vertical equations, how to determine the weightings of different equations is a key to obtain the reliable tomographic result. Therefore, a method is proposed to determine the weightings of various equations based on the variance component analysis (VCA). The data from Satellite Positioning Reference Station Network (SatRef) of Hong Kong over the period of 27 days is selected for the tomography experiment. The tomographic result shows that the proposed method is of ability to obtain a good quality. Comparing to the traditional method, the utilization rate and number of voxels crossed by rays have been improved by 32.21 and 12.23%, respectively. When compared to the radiosonde data, the RMS error of the reconstructed integral water vapor (IWV) derived from the proposed method (4.2 mm) superior to that from the traditional method (5.2 mm). The comparison of water vapor profiles also shows that the proposed method with a RMS value of 1.30 g/m3, is smaller than that of traditional method with a value of 1.58 g/m3, and the accuracy of tomographic result based on the proposed method is increased by 17.7%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bevis M, Businger S, Herring T, Rocken C et al (1992) GPS meteorology-remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97(D14):15787–15801CrossRef Bevis M, Businger S, Herring T, Rocken C et al (1992) GPS meteorology-remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97(D14):15787–15801CrossRef
2.
Zurück zum Zitat Rocken C, Ware R, Van Hove T et al (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20(23):2631–2634CrossRef Rocken C, Ware R, Van Hove T et al (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20(23):2631–2634CrossRef
3.
Zurück zum Zitat Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35(6):830–838CrossRef Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35(6):830–838CrossRef
4.
Zurück zum Zitat Emardson TR, Johansson J, Elgered G (2000) The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans Geosci Remote Sens 38(1):324–329CrossRef Emardson TR, Johansson J, Elgered G (2000) The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans Geosci Remote Sens 38(1):324–329CrossRef
5.
Zurück zum Zitat Gendt G, Dick G, Reigber C et al (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Mereorol Soc Jpn 82(1B):361–370CrossRef Gendt G, Dick G, Reigber C et al (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Mereorol Soc Jpn 82(1B):361–370CrossRef
6.
Zurück zum Zitat Smith TL, Benjamin SG, Gutman SI et al (2007) Short-range forecast impact from assimilation of GPS-IPW observations into the rapid update cycle. Mon Weather Rev 135(8):2914–2930CrossRef Smith TL, Benjamin SG, Gutman SI et al (2007) Short-range forecast impact from assimilation of GPS-IPW observations into the rapid update cycle. Mon Weather Rev 135(8):2914–2930CrossRef
7.
Zurück zum Zitat Raja MRV, Gutman SI, Yoe JG et al (2008) The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based GPS receivers over the contiguous United States. J Atmos Ocean Technol 25(3):416–428CrossRef Raja MRV, Gutman SI, Yoe JG et al (2008) The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based GPS receivers over the contiguous United States. J Atmos Ocean Technol 25(3):416–428CrossRef
8.
Zurück zum Zitat de Haan S, Holleman I, Holtslag AA (2009) Real-time water vapor maps from a GPS surface network: construction, validation, and applications. J Appl Meteorol Climatol 48(7):1302–1316CrossRef de Haan S, Holleman I, Holtslag AA (2009) Real-time water vapor maps from a GPS surface network: construction, validation, and applications. J Appl Meteorol Climatol 48(7):1302–1316CrossRef
9.
Zurück zum Zitat Lee SW, Kouba J, Schutz B et al (2013) Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geodesy 87(10–12):923–934CrossRef Lee SW, Kouba J, Schutz B et al (2013) Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geodesy 87(10–12):923–934CrossRef
10.
Zurück zum Zitat Brenot H, Wautelet G, Warnant R et al (2014) GNSS meteorology and impact on NRT position. In: European navigation conference (ENC) GNSS 2014 Brenot H, Wautelet G, Warnant R et al (2014) GNSS meteorology and impact on NRT position. In: European navigation conference (ENC) GNSS 2014
11.
Zurück zum Zitat Chen B, Liu Z (2014) Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J Geodesy 88(7):691–703CrossRef Chen B, Liu Z (2014) Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J Geodesy 88(7):691–703CrossRef
12.
Zurück zum Zitat Braun J, Rocken C, Meertens C et al (1999) Development of a water vapor tomography system using low cost L1 GPS receivers. In: Ninth ARM science team meeting, US Department of Energy, San Antonio, Tex, pp 22–26 Braun J, Rocken C, Meertens C et al (1999) Development of a water vapor tomography system using low cost L1 GPS receivers. In: Ninth ARM science team meeting, US Department of Energy, San Antonio, Tex, pp 22–26
13.
Zurück zum Zitat Radon J (1917) Über die Bestimmung von Funktionen durch ihre In-te-gral-werte längs gewisser Mannigfaltigkeiten. Comput Tomogr 69:262–277 Radon J (1917) Über die Bestimmung von Funktionen durch ihre In-te-gral-werte längs gewisser Mannigfaltigkeiten. Comput Tomogr 69:262–277
14.
Zurück zum Zitat Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae 18(2):223–234CrossRef Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae 18(2):223–234CrossRef
15.
Zurück zum Zitat Alshawaf F (2013) Constructing water vapor maps by fusing InSAR, GNSS and WRF data. Karlsruhe, Karlsruher Institut für Technologie (KIT), Dissertation Alshawaf F (2013) Constructing water vapor maps by fusing InSAR, GNSS and WRF data. Karlsruhe, Karlsruher Institut für Technologie (KIT), Dissertation
16.
Zurück zum Zitat Benevides P, Nico G, Catalao J et al (2015) Merging SAR interferometry and GPS tomography for high-resolution mapping of 3D tropospheric water vapour. In: IEEE international geoscience and remote sensing symposium (IGARSS), pp 3607–3610 Benevides P, Nico G, Catalao J et al (2015) Merging SAR interferometry and GPS tomography for high-resolution mapping of 3D tropospheric water vapour. In: IEEE international geoscience and remote sensing symposium (IGARSS), pp 3607–3610
17.
Zurück zum Zitat Rohm W, Bosy J (2011) The verification of GNSS tropospheric tomography model in a mountainous area. Adv Space Res 47(10):1721–1730CrossRef Rohm W, Bosy J (2011) The verification of GNSS tropospheric tomography model in a mountainous area. Adv Space Res 47(10):1721–1730CrossRef
18.
Zurück zum Zitat Van Baelen J, Reverdy M, Tridon F et al (2011) On the relationship between water vapour field evolution and the life cycle of precipitation systems. Q J R Meteorol Soc 137(S1):204–223CrossRef Van Baelen J, Reverdy M, Tridon F et al (2011) On the relationship between water vapour field evolution and the life cycle of precipitation systems. Q J R Meteorol Soc 137(S1):204–223CrossRef
19.
Zurück zum Zitat Benevides P, Catalão J, Miranda PM (2014) Experimental GNSS tomography study in Lisbon (Portugal). Física de la Tierra 26:65–79CrossRef Benevides P, Catalão J, Miranda PM (2014) Experimental GNSS tomography study in Lisbon (Portugal). Física de la Tierra 26:65–79CrossRef
20.
Zurück zum Zitat Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets Space 52(11):935–939CrossRef Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets Space 52(11):935–939CrossRef
21.
Zurück zum Zitat Troller M, Burki B, Cocard M, Geiger A et al (2002) 3-D refractivity field from GPS double difference tomography. Geophys Res Lett 29:2149–2152CrossRef Troller M, Burki B, Cocard M, Geiger A et al (2002) 3-D refractivity field from GPS double difference tomography. Geophys Res Lett 29:2149–2152CrossRef
22.
Zurück zum Zitat Perler D, Geiger A, Hurter F (2011) 4D GPS water vapour tomography: new parameterized approaches. J Geophys Res 85:539–550 Perler D, Geiger A, Hurter F (2011) 4D GPS water vapour tomography: new parameterized approaches. J Geophys Res 85:539–550
23.
Zurück zum Zitat Skone S, Hoyle V (2005) Troposphere modeling in a regional GPS network. Positioning 4(1&2):230–239CrossRef Skone S, Hoyle V (2005) Troposphere modeling in a regional GPS network. Positioning 4(1&2):230–239CrossRef
24.
Zurück zum Zitat Bender M, Raabe A (2007) Preconditions to ground based GPS water vapour tomography. Ann Geophys 25(8):1727–1734CrossRef Bender M, Raabe A (2007) Preconditions to ground based GPS water vapour tomography. Ann Geophys 25(8):1727–1734CrossRef
25.
Zurück zum Zitat Wen D, Liu S, Tang P (2010) Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solutions 14(4):375–380CrossRef Wen D, Liu S, Tang P (2010) Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solutions 14(4):375–380CrossRef
26.
Zurück zum Zitat Engle RF, Granger CWJ (1987) Co-integration and error correction: representation, estimation, and testing. Econometrica 55(2):251–276MathSciNetCrossRef Engle RF, Granger CWJ (1987) Co-integration and error correction: representation, estimation, and testing. Econometrica 55(2):251–276MathSciNetCrossRef
27.
Zurück zum Zitat Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366):427–431MathSciNetCrossRef Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366):427–431MathSciNetCrossRef
28.
Zurück zum Zitat Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49(4):1057–1072MathSciNetCrossRef Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49(4):1057–1072MathSciNetCrossRef
Metadaten
Titel
A Troposphere Tomography Method by Combining the Truncation Coefficient and Variance Component Analysis
verfasst von
Qingzhi Zhao
Yibin Yao
Linyang Xin
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0005-9_1

    Premium Partner