Skip to main content

1988 | OriginalPaper | Buchkapitel

Abel Summability for a Distribution Sampling Theorem

verfasst von : Gilbert G. Walter

Erschienen in: Generalized Functions, Convergence Structures, and Their Applications

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Let F(w)be an L2 function with compact support on [-σ,σ]; let T = π/σ and f(t) be the Fourier transform of F(w). Then the well-known sampling theorem says $${\text{f}}\left( {\text{t}} \right) = \sum\limits_{{\text{n}} = - \infty }^\infty {{\text{f}}\left( {{\text{nT}}} \right)\frac{{\sin \sigma \left( {{\text{t}} - {\text{nT}}} \right)}} {{\sigma \left( {{\text{t}} - {\text{nT}}} \right)}}},$$ where convergence is uniform in ℝ1. If F(w) is now a distribution with compact support on [-σ,σ] the Fourier transform is still a function but the series does not converge necessarily. However it is shown, under mild conditions of F(w), that the series is Abel summable, i.e. $${\text{f}}\left( {\text{t}} \right) = \mathop {\lim }\limits_{{\text{r}} \to l^ - } \sum\limits_{{\text{n}} = - \infty }^\infty {{\text{r}}^{\left| {\text{n}} \right|} \,{\text{f}}\left( {{\text{nT}}} \right)\frac{{\sin \sigma \left( {{\text{t}} - {\text{nT}}} \right)}} {{\sigma \left( {{\text{t}} - {\text{nT}}} \right)}}}$$ where the convergence is uniform on bounded sets in ℝ1.

Metadaten
Titel
Abel Summability for a Distribution Sampling Theorem
verfasst von
Gilbert G. Walter
Copyright-Jahr
1988
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4613-1055-6_35

Premium Partner