Skip to main content
Erschienen in: Journal of Scientific Computing 3/2017

01.09.2016

Accurate Implicit–Explicit General Linear Methods with Inherent Runge–Kutta Stability

verfasst von: Michał Braś, Giuseppe Izzo, Zdzisław Jackiewicz

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate implicit–explicit (IMEX) general linear methods (GLMs) with inherent Runge–Kutta stability (IRKS) for differential systems with non-stiff and stiff processes. The construction of such formulas starts with implicit GLMs with IRKS which are A- and L-stable, and then we ‘remove’ implicitness in non-stiff terms by extrapolating unknown stage derivatives by stage derivatives which are already computed by the method. Then we search for IMEX schemes with large regions of absolute stability of the ‘explicit part’ of the method assuming that the ‘implicit part’ of the scheme is \(A(\alpha )\)-stable for some \(\alpha \in (0,\pi /2]\). Examples of highly stable IMEX GLMs are provided of order \(1\le p\le 4\). Numerical examples are also given which illustrate good performance of these schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdulle, A., Vilmart, G.: PIROCK: a swiss-knife partitioned implicit–explicit orthogonal Runge–Kutta–Chebyshev integrator for stiff diffusion–advection–reaction problems with or without noise. J. Comput. Phys. 242, 869–888 (2013)MathSciNetCrossRefMATH Abdulle, A., Vilmart, G.: PIROCK: a swiss-knife partitioned implicit–explicit orthogonal Runge–Kutta–Chebyshev integrator for stiff diffusion–advection–reaction problems with or without noise. J. Comput. Phys. 242, 869–888 (2013)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Ascher, U.M., Ruuth, S.J., Wetton, B.: Implicit–explicit methods for time dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Wetton, B.: Implicit–explicit methods for time dependent PDE’s. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Beck, S., Weiner, R., Podhaisky, H., Schmitt, B.A.: Implicit peer methods for large stiff ODE systems. J. Appl. Math. Comput. 38, 389–406 (2012)MathSciNetCrossRefMATH Beck, S., Weiner, R., Podhaisky, H., Schmitt, B.A.: Implicit peer methods for large stiff ODE systems. J. Appl. Math. Comput. 38, 389–406 (2012)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential–algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)MathSciNetCrossRefMATH Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential–algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Boscarino, S.: On the accurate third order implicit–explicit Runge–Kutta methods for stiff problems. Appl. Numer. Math. 59, 1515–1528.37 (2009), B305–B331 (2015) Boscarino, S.: On the accurate third order implicit–explicit Runge–Kutta methods for stiff problems. Appl. Numer. Math. 59, 1515–1528.37 (2009), B305–B331 (2015)
7.
Zurück zum Zitat Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, M.L.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37, B305–B331 (2015). doi:10.1137/140967544 Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, M.L.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37, B305–B331 (2015). doi:10.​1137/​140967544
8.
Zurück zum Zitat Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)MathSciNetCrossRefMATH Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Braś, M., Cardone, A., Jackiewicz, Z., Welfert, B.: Order reduction phenomenon for general linear methods. SIAM J. Number. Anal. (submitted) Braś, M., Cardone, A., Jackiewicz, Z., Welfert, B.: Order reduction phenomenon for general linear methods. SIAM J. Number. Anal. (submitted)
10.
Zurück zum Zitat Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Runge–Kutta and General Linear Methods. Wiley, Chichester (1987)MATH Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Runge–Kutta and General Linear Methods. Wiley, Chichester (1987)MATH
12.
Zurück zum Zitat Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATH Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATH
14.
Zurück zum Zitat Butcher, J.C., Jackiewicz, Z.: Diagonally implicit general linear methods for ordinary differential equations. BIT 33, 452–472 (1993)MathSciNetCrossRefMATH Butcher, J.C., Jackiewicz, Z.: Diagonally implicit general linear methods for ordinary differential equations. BIT 33, 452–472 (1993)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Butcher, J.C., Jackiewicz, Z.: Construction of general linear methods with Runge–Kutta stability properties. Numer. Algorithms 36, 53–72 (2004)MathSciNetCrossRefMATH Butcher, J.C., Jackiewicz, Z.: Construction of general linear methods with Runge–Kutta stability properties. Numer. Algorithms 36, 53–72 (2004)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Butcher, J.C., Jackiewicz, Z., Wright, W.M.: Error propagation for general linear methods for ordinary differential equations. J. Complex. 23, 560–580 (2007)MathSciNetCrossRefMATH Butcher, J.C., Jackiewicz, Z., Wright, W.M.: Error propagation for general linear methods for ordinary differential equations. J. Complex. 23, 560–580 (2007)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–diffusion–reaction problems. Appl. Numer. Math. 37, 535–549 (2001)MathSciNetCrossRefMATH Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–diffusion–reaction problems. Appl. Numer. Math. 37, 535–549 (2001)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit–explicit general linear methods (2013), arXiv:1304.2276 Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit–explicit general linear methods (2013), arXiv:​1304.​2276
20.
Zurück zum Zitat Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit–explicit general linear methods. Numer. Algorithms 65, 377–399 (2014)MathSciNetCrossRefMATH Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit–explicit general linear methods. Numer. Algorithms 65, 377–399 (2014)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolated implicit–explicit Runge–Kutta methods. Math. Model. Anal. 19, 18–43 (2014)MathSciNetCrossRef Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolated implicit–explicit Runge–Kutta methods. Math. Model. Anal. 19, 18–43 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Construction of highly stable implicit-explicit general linear methods. In: Discrete and Continuous Dynamical Systems. Series S, vol. 2015, pp. 185–194 (2015) Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Construction of highly stable implicit-explicit general linear methods. In: Discrete and Continuous Dynamical Systems. Series S, vol. 2015, pp. 185–194 (2015)
23.
Zurück zum Zitat Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257–276 (1980)MathSciNetCrossRefMATH Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257–276 (1980)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, New York (1972)MATH Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, New York (1972)MATH
25.
Zurück zum Zitat Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25, 193–205 (1997)MathSciNetCrossRefMATH Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25, 193–205 (1997)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, New York (1993)MATH Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, New York (1993)MATH
27.
Zurück zum Zitat Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential–Algebraic Problems. Springer, Berlin (1996)CrossRefMATH Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential–Algebraic Problems. Springer, Berlin (1996)CrossRefMATH
28.
Zurück zum Zitat Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)MathSciNetCrossRefMATH Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin, Heidelberg, New York (2003)CrossRefMATH Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin, Heidelberg, New York (2003)CrossRefMATH
30.
Zurück zum Zitat Izzo, G., Jackiewicz, Z.: Highly stable implicit–explicit Runge–Kutta methods. Appl. Number. Math. (submitted) Izzo, G., Jackiewicz, Z.: Highly stable implicit–explicit Runge–Kutta methods. Appl. Number. Math. (submitted)
31.
32.
Zurück zum Zitat Jackiewicz, Z.: Construction and implementation of general linear methods for ordinary differential equations. A review. J. Sci. Comput. 25, 29–49 (2005)MathSciNetCrossRefMATH Jackiewicz, Z.: Construction and implementation of general linear methods for ordinary differential equations. A review. J. Sci. Comput. 25, 29–49 (2005)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)CrossRefMATH Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)CrossRefMATH
34.
Zurück zum Zitat Jebens, S., Knoth, O., Weiner, R.: Partially implicit peer methods for the compressible Euler equations. J. Comput. Phys. 230, 4955–4974 (2011)MathSciNetCrossRefMATH Jebens, S., Knoth, O., Weiner, R.: Partially implicit peer methods for the compressible Euler equations. J. Comput. Phys. 230, 4955–4974 (2011)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred correction methods for ordinary differential equations. BIT 45, 341–373 (2005)MathSciNetCrossRefMATH Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred correction methods for ordinary differential equations. BIT 45, 341–373 (2005)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48, 369–387 (2004)MathSciNetCrossRefMATH Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48, 369–387 (2004)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent trends in numerical analysis, 269–288, Adv. Theory Comput. Math., 3, Nova Science Publishers, Huntington, NY (2001) Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent trends in numerical analysis, 269–288, Adv. Theory Comput. Math., 3, Nova Science Publishers, Huntington, NY (2001)
39.
Zurück zum Zitat Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MathSciNetMATH Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MathSciNetMATH
40.
Zurück zum Zitat Pearson, J.E.: Complex patterns in a simple systems. Science 261, 189–192 (1993)CrossRef Pearson, J.E.: Complex patterns in a simple systems. Science 261, 189–192 (1993)CrossRef
41.
Zurück zum Zitat Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)MathSciNetCrossRefMATH Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Shampine, L.F., Sommeijer, B.P., Verwer, J.G.: IRKC: an IMEX solver for stiff diffusion–reaction PDEs. J. Comput. Appl. Math. 196, 485–497 (2006)MathSciNetCrossRefMATH Shampine, L.F., Sommeijer, B.P., Verwer, J.G.: IRKC: an IMEX solver for stiff diffusion–reaction PDEs. J. Comput. Appl. Math. 196, 485–497 (2006)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Schnakenberg, J.: Simple chemical reaction systems with limiting cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)MathSciNetCrossRef Schnakenberg, J.: Simple chemical reaction systems with limiting cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)MathSciNetCrossRef
44.
Zurück zum Zitat Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer, Berlin (1999) Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer, Berlin (1999)
45.
46.
Zurück zum Zitat Wright, W.: General linear methods with inherent Runge–Kutta stability, Ph.D. thesis, The University of Auckland, New Zealand (2002) Wright, W.: General linear methods with inherent Runge–Kutta stability, Ph.D. thesis, The University of Auckland, New Zealand (2002)
47.
48.
Zurück zum Zitat Zeeman, E.C.: Differential Equations for the Heartbeat and Nerve Impulse. In: Waddington, C.H. (ed.) Towards a Theoretical Biology, vol. 4, pp. 4–67. Edinburgh University Press, Edinburgh (1972) Zeeman, E.C.: Differential Equations for the Heartbeat and Nerve Impulse. In: Waddington, C.H. (ed.) Towards a Theoretical Biology, vol. 4, pp. 4–67. Edinburgh University Press, Edinburgh (1972)
49.
Zurück zum Zitat Zhang, H., Sandu, A., Blaise, S.: High order implicit–explicit general linear methods with optimized stability regions (2014), arXiv:1407.2337 Zhang, H., Sandu, A., Blaise, S.: High order implicit–explicit general linear methods with optimized stability regions (2014), arXiv:​1407.​2337
50.
Zurück zum Zitat Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit–explicit general linear methods for ordinary differential equations. J. Sci. Comput. 61, 119–144 (2014)MathSciNetCrossRefMATH Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit–explicit general linear methods for ordinary differential equations. J. Sci. Comput. 61, 119–144 (2014)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Zharovsky, E., Sandu, A., Zhang, H.: A class of implicit–explicit two-step Runge–Kutta methods. SIAM J. Numer. Anal. 53, 321–341 (2015)MathSciNetCrossRefMATH Zharovsky, E., Sandu, A., Zhang, H.: A class of implicit–explicit two-step Runge–Kutta methods. SIAM J. Numer. Anal. 53, 321–341 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
Accurate Implicit–Explicit General Linear Methods with Inherent Runge–Kutta Stability
verfasst von
Michał Braś
Giuseppe Izzo
Zdzisław Jackiewicz
Publikationsdatum
01.09.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0273-y

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe

Premium Partner