Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Acoustic Sensors in Biomedical Applications

verfasst von : Nilanjan Dey, Amira S. Ashour, Waleed S. Mohamed, Nhu Gia Nguyen

Erschienen in: Acoustic Sensors for Biomedical Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The biomedical engineering domain is concerned with physiological modeling, biomaterials, biomechanics, control and simulation, etc. Biomedical sensors are considered the most vital parts in the biomedical engineering. These sensors enable the biologic events detection and conversion to signals. The biomedical sensors receipt signals that represent the biomedical measurements and convert them into optical or electrical signals. Thus, the biomedical sensor acts as an interface between the biological feature and the electronic system. Sensor specialists and biomedical engineers are interested to process and design sensors for several application problems. This chapter introduces some examples of the acoustic sensors in different biomedical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kovacs, G., & Venema, A. (1992). Theoretical comparison of sensitivities of acoustic shear wave modes for (bio) chemical sensing in liquids. Applied Physics Letters, 61(6), 639–641.CrossRef Kovacs, G., & Venema, A. (1992). Theoretical comparison of sensitivities of acoustic shear wave modes for (bio) chemical sensing in liquids. Applied Physics Letters, 61(6), 639–641.CrossRef
2.
Zurück zum Zitat Gizeli, E., Liley, M., Lowe, C. R., & Vogel, H. (1997). Antibody binding to a functionalized supported lipid layer: A direct acoustic immunosensor. Analytical Chemistry, 69(23), 4808–4813.CrossRef Gizeli, E., Liley, M., Lowe, C. R., & Vogel, H. (1997). Antibody binding to a functionalized supported lipid layer: A direct acoustic immunosensor. Analytical Chemistry, 69(23), 4808–4813.CrossRef
3.
Zurück zum Zitat Korenbaum, V. I., Tagil’tsev, A. A., D’yachenko, A. I., & Kostiv, A. E. (2013). Comparison of the characteristics of different types of acoustic sensors when recording respiratory noises on the surface of the human chest. Acoustical Physics, 59(4), 474–481.CrossRef Korenbaum, V. I., Tagil’tsev, A. A., D’yachenko, A. I., & Kostiv, A. E. (2013). Comparison of the characteristics of different types of acoustic sensors when recording respiratory noises on the surface of the human chest. Acoustical Physics, 59(4), 474–481.CrossRef
4.
Zurück zum Zitat Korenbaum, V. I., Tagil’tsev, A. A., Kostiv, A. E., Gorovoy, S. V., & Pochekutova, I. A. (2008). Acoustic equipment for studying human respiratory sounds. Instruments and Experimental Techniques, 51(2), 296–303.CrossRef Korenbaum, V. I., Tagil’tsev, A. A., Kostiv, A. E., Gorovoy, S. V., & Pochekutova, I. A. (2008). Acoustic equipment for studying human respiratory sounds. Instruments and Experimental Techniques, 51(2), 296–303.CrossRef
5.
Zurück zum Zitat Korenbaum, V. I., Nuzhdenko, A. V., Tagiltsev, A. A., & Kostiv, A. E. (2010). Investigation into transmission of complex sound signals in the human respiratory system. Acoustical Physics, 56(4), 568–575.CrossRef Korenbaum, V. I., Nuzhdenko, A. V., Tagiltsev, A. A., & Kostiv, A. E. (2010). Investigation into transmission of complex sound signals in the human respiratory system. Acoustical Physics, 56(4), 568–575.CrossRef
6.
Zurück zum Zitat Korenbaum, V. I., D’yachenko, A. I., Nuzhdenko, A. V., Lopatkin, N. S., Tagil’tsev, A. A., & Kostiv, A. E. (2011). Transmission of complex sound signals in the human respiratory system as a function of sound velocity in the utilized gas mixture. Acoustical Physics, 57(6), 872–879.CrossRef Korenbaum, V. I., D’yachenko, A. I., Nuzhdenko, A. V., Lopatkin, N. S., Tagil’tsev, A. A., & Kostiv, A. E. (2011). Transmission of complex sound signals in the human respiratory system as a function of sound velocity in the utilized gas mixture. Acoustical Physics, 57(6), 872–879.CrossRef
7.
Zurück zum Zitat Emmanuel, B. S. (2012). A review of signal processing techniques for heart sound analysis in clinical diagnosis. Journal of Medical Engineering & Technology, 36(6), 303–307.CrossRef Emmanuel, B. S. (2012). A review of signal processing techniques for heart sound analysis in clinical diagnosis. Journal of Medical Engineering & Technology, 36(6), 303–307.CrossRef
8.
Zurück zum Zitat Martinez-Alajarin, J., & Ruiz-Merino, R. (2005, June). Efficient method for events detection in phonocardiographic signals. In Bioengineered and bioinspired systems II (Vol. 5839, pp. 398–410). International Society for Optics and Photonics. Martinez-Alajarin, J., & Ruiz-Merino, R. (2005, June). Efficient method for events detection in phonocardiographic signals. In Bioengineered and bioinspired systems II (Vol. 5839, pp. 398–410). International Society for Optics and Photonics.
9.
Zurück zum Zitat Singh, J., & Anand, R. S. (2007). Computer aided analysis of phonocardiogram. Journal of Medical Engineering & Technology, 31(5), 319–323.CrossRef Singh, J., & Anand, R. S. (2007). Computer aided analysis of phonocardiogram. Journal of Medical Engineering & Technology, 31(5), 319–323.CrossRef
10.
Zurück zum Zitat Clifford, G. D. (2002). Signal processing methods for heart rate variability (Doctoral dissertation, University of Oxford). Clifford, G. D. (2002). Signal processing methods for heart rate variability (Doctoral dissertation, University of Oxford).
Metadaten
Titel
Acoustic Sensors in Biomedical Applications
verfasst von
Nilanjan Dey
Amira S. Ashour
Waleed S. Mohamed
Nhu Gia Nguyen
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-92225-6_5

Neuer Inhalt