Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.02.2017 | Trends of Data Science | Ausgabe 3/2017

International Journal of Data Science and Analytics 3/2017

Active zero-shot learning: a novel approach to extreme multi-labeled classification

Zeitschrift:
International Journal of Data Science and Analytics > Ausgabe 3/2017
Autoren:
Sihong Xie, Philip S. Yu

Abstract

Big data bring a huge volume of data in a great speed and in many formats with extremely many labels and concepts to be modeled and predicted, such as in text and image tagging, online advertisement placement, recommendation systems, NLP. This emerging issue of big data is termed “extreme multi-labeled classification” (XMLC) and is challenging due to the time, space and sample complexity in predictive model training and testing. We first define general XMLC and then categorize and review recent methods based on two specific forms of XMLC. We propose a novel method called active zero-shot learning to reduce the above complexities. Since the performance of the unseen class prediction largely depends on the seen classes that have labeled data, we challenge the critical and yet often overlooked assumption that the labeled data can only be passively acquired. We propose a new learning paradigm aiming at accurate predictions of a large number of unseen labels using labeled data from only an intelligently selected small set of seed classes with the help of external knowledge. We further demonstrate that the proposed strategy has desirable probabilistic properties to facilitate unseen classes prediction. Experiments on 4 datasets demonstrate that the proposed algorithm is superior to a wide spectrum of baselines. Based on our findings, we point out several critical and promising future directions in XMLC.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise