2016 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Methods of Applied Mathematics with a Software Overview
Fourier methods broadly construed have applications beyond the problems discussed in previous chapters. All of these consist, in a sense, of different decompositions for functions. The motivation for the decomposition varies from a need for efficient storage, shifted point of view, to geometrically motivated adaptations of standard transforms.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
E.A. Coddington, N. Levinson,
Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)
MATH
2.
I. Daubechies,
Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, 1992)
3.
N.J. Fine, On the walsh functions. Trans. Am. Math. Soc.
65, 372–414 (1949)
MathSciNetCrossRefMATH
4.
H. Harmuth,
Transmission 0f Information by Orthogonal Functions (Springer-Verlag, New York, 1970)
5.
B.W. Kernighan, R. Pike,
The UNIX Programming Environment (Prentice-Hall, Englewood Cliffs, 1984)
6.
S. Mallat,
A Wavelet Tour of Signal Processing (Academic, San Diego, 1998)
7.
Mathworks Incorporated,
Signal Processing Toolbox User’s Guide (Mathworks Incorporated, Natick, 2000)
8.
S. Pinker,
The Language Instinct (William Morrow and Sons, New York, 1995)
9.
I.H. Sneddon,
The Use of Integral Transforms (McGraw-Hill, New York, 1972)
MATH
10.
C.J. Tranter,
Integral Transforms in Mathematical Physics (Methuen and Company, London, 1966)
MATH
C.S. Burrus, R.A. Gopinath, H. Guo,
Wavelets and Wavelet Transforms (Prentice-Hall, Upper Saddle River, 1998)
E.U. Condon,
Quantum Mechanics (McGraw-Hill, New York, 1929)
MATH
I. Daubechies (ed.),
Different Perspectives on Wavelets (American Mathematical Society, Providence, 1993)
L.I. Schiff,
Quantum Mechanics, 2nd edn. (McGraw-Hill, New York, 1955)
MATH
A. Teolis,
Computational Signal Processing with Wavelets (Birkhäuser, Boston, 1998)
B. Van der Pol, H. Bremmer,
Operational Calculus Based on the Two-Sided Laplace Integral, 2nd edn. (Cambridge University Press, Cambridge, 1955)
MATH
D.F. Walnut,
An Introduction to Wavelet Analysis (Birkhäuser, Boston, 2002)
MATH
D.V. Widder,
The Laplace Transform (Princeton University Press, Princeton, 1946)
MATH
- Titel
- Additional Topics
- DOI
- https://doi.org/10.1007/978-3-319-43370-7_9
- Autor:
-
Jon H. Davis
- Sequenznummer
- 9
- Kapitelnummer
- Chapter 9