Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Advanced Wind Turbine Dynamics

verfasst von : Qi Wang

Erschienen in: Advanced Wind Turbine Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the geometrically exact beam theory implemented by the Legendre-spectral-finite-element (LSFE) method. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is incorporated in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. A numerical example using the NREL 5-MW wind turbine is provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bathe KJ, Cimento AP (1980) Some practical procedures for the solution of nonlinear finite element equations. Comput Methods Appl Mech Eng 22:59–85CrossRef Bathe KJ, Cimento AP (1980) Some practical procedures for the solution of nonlinear finite element equations. Comput Methods Appl Mech Eng 22:59–85CrossRef
Zurück zum Zitat Bauchau OA (2010) Flexible multibody dynamics. Springer, New YorkMATH Bauchau OA (2010) Flexible multibody dynamics. Springer, New YorkMATH
Zurück zum Zitat Bauchau O, Epple A, Heo S (2008) Interpolation of finite rotations in flexible multibody dynamics simulations. Proc Inst Mech Eng Part K J Multi-body Dyn 222:353–366 Bauchau O, Epple A, Heo S (2008) Interpolation of finite rotations in flexible multibody dynamics simulations. Proc Inst Mech Eng Part K J Multi-body Dyn 222:353–366
Zurück zum Zitat Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Methods Eng 54:1775–1788MathSciNetCrossRef Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Methods Eng 54:1775–1788MathSciNetCrossRef
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375MathSciNetCrossRef Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–375MathSciNetCrossRef
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York
Zurück zum Zitat Guntur S, Jonkman J, Schreck S, Jonkman B, Wang Q, Sprague MA, Singh M, Hind M, Sievers R (2016) FAST v8 verification and validation for a MW-scale wind turbine with aeroelastically tailored blades. In: Proceedings of the 34th ASME wind energy symposium, San Diego Guntur S, Jonkman J, Schreck S, Jonkman B, Wang Q, Sprague MA, Singh M, Hind M, Sievers R (2016) FAST v8 verification and validation for a MW-scale wind turbine with aeroelastically tailored blades. In: Proceedings of the 34th ASME wind energy symposium, San Diego
Zurück zum Zitat Hodges D (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26:1253–1273MathSciNetCrossRef Hodges D (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26:1253–1273MathSciNetCrossRef
Zurück zum Zitat Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26CrossRef Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26CrossRef
Zurück zum Zitat Ibrahimbegović A, Mikdad MA (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814MathSciNetCrossRef Ibrahimbegović A, Mikdad MA (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814MathSciNetCrossRef
Zurück zum Zitat Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171MathSciNetCrossRef Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171MathSciNetCrossRef
Zurück zum Zitat Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory
Zurück zum Zitat Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math LII 52:87–95CrossRef Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math LII 52:87–95CrossRef
Zurück zum Zitat Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49:55–70CrossRef Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49:55–70CrossRef
Zurück zum Zitat Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II. Comput Methods Appl Mech Eng 58:79–116CrossRef Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II. Comput Methods Appl Mech Eng 58:79–116CrossRef
Zurück zum Zitat Wang Q, Yu W, Sprague MA (2013) Geometric nonlinear analysis of composite beams using Wiener-Milenković parameters. In: Proceedings of the 54th structures, structural dynamics, and materials conference, Boston Wang Q, Yu W, Sprague MA (2013) Geometric nonlinear analysis of composite beams using Wiener-Milenković parameters. In: Proceedings of the 54th structures, structural dynamics, and materials conference, Boston
Zurück zum Zitat Yu W, Blair M (2012) GEBT: a general-purpose nonlinear analysis tool for composite beams. Compos Struct 94:2677–2689CrossRef Yu W, Blair M (2012) GEBT: a general-purpose nonlinear analysis tool for composite beams. Compos Struct 94:2677–2689CrossRef
Metadaten
Titel
Advanced Wind Turbine Dynamics
verfasst von
Qi Wang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-78166-2_6