Skip to main content

2018 | OriginalPaper | Buchkapitel

9. Advances in Molecular Simulation Studies of Clay Minerals

verfasst von : Randall T. Cygan, Evgeniy M. Myshakin

Erschienen in: Greenhouse Gases and Clay Minerals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The unique structure and behavior of swelling clay minerals, as observed in the laboratory and in the environment, present a challenge in understanding of the molecular details associated with these minerals. The chapter introduces the essence of classical methods involving empirically derived potential energy expressions that allow simulation of periodic cells representing bulk and interfacial clay mineral systems. The classical models provide the simulation and analysis of many thousands to more than a million atoms for evaluating structures, adsorption, diffusion, intercalation, physical, and other properties. Quantum chemical calculations, including molecular orbital methods and density functional theory, optimize the configuration of electrons about atoms from first principles, but require significant computational cost to examine many of the important topics in clay mineralogy. Molecular simulation methods such as energy minimization, molecular dynamics, Monte Carlo techniques, vibrational analysis, thermodynamics calculations, transition state analysis, and a variety of related computational methods are utilized to improve our understanding of clay minerals, and to better interpret traditional characterization and spectroscopic methods. An example showing the use of molecular simulation for clay minerals is presented for the process of montmorillonite’s swelling as a function of interlayer water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aimoli, C. G., Maginn, E. J., & Abreu, C. R. A. (2014). Transport properties of carbon dioxide and methane from molecular dynamics simulations. Journal of Chemical Physics, 141(13), 134101.CrossRef Aimoli, C. G., Maginn, E. J., & Abreu, C. R. A. (2014). Transport properties of carbon dioxide and methane from molecular dynamics simulations. Journal of Chemical Physics, 141(13), 134101.CrossRef
Zurück zum Zitat Burgess, J. (1999). Ions in solution: Basic principles of chemical interactions (Horwood Series in Chemical Science). Reprint (Revised ed.). Chichester: Elsevier. Burgess, J. (1999). Ions in solution: Basic principles of chemical interactions (Horwood Series in Chemical Science). Reprint (Revised ed.). Chichester: Elsevier.
Zurück zum Zitat Cygan, R. T., Liang, J.-J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108(4), 1255–1266.CrossRef Cygan, R. T., Liang, J.-J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108(4), 1255–1266.CrossRef
Zurück zum Zitat Cygan, R. T., Romanov, V. N., & Myshakin, E. M. (2012). Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. Journal of Physical Chemistry C, 116(24), 13079–13091.CrossRef Cygan, R. T., Romanov, V. N., & Myshakin, E. M. (2012). Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. Journal of Physical Chemistry C, 116(24), 13079–13091.CrossRef
Zurück zum Zitat Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15), 154104.CrossRef Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15), 154104.CrossRef
Zurück zum Zitat Grimme, S., Antony, J., Schwabe, T., & Mück-Lichtenfeld, C. (2007). Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Organic & Biomolecular Chemistry, 5, 741–758. Grimme, S., Antony, J., Schwabe, T., & Mück-Lichtenfeld, C. (2007). Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Organic & Biomolecular Chemistry, 5, 741–758.
Zurück zum Zitat Harris, J. G., & Yung, K. H. (1995). Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. Journal of Physical Chemistry, 99(31), 12021–12024.CrossRef Harris, J. G., & Yung, K. H. (1995). Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. Journal of Physical Chemistry, 99(31), 12021–12024.CrossRef
Zurück zum Zitat Heinz, H., Lin, T.-J., Mishra, R. K., & Emami, F. S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29(6), 1754–1765.CrossRef Heinz, H., Lin, T.-J., Mishra, R. K., & Emami, F. S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29(6), 1754–1765.CrossRef
Zurück zum Zitat Kawamura, K., et al. (1998). New approach for predicting the long-term behavior of bentonite: The unified method of molecular simulation and homogenization analysis. In I. G. McKinley & C. McCombie (Eds.), Scientific basis for nuclear waste management XXI, 506 (pp. 359–366). Warrendale: Materials Research Society. Kawamura, K., et al. (1998). New approach for predicting the long-term behavior of bentonite: The unified method of molecular simulation and homogenization analysis. In I. G. McKinley & C. McCombie (Eds.), Scientific basis for nuclear waste management XXI, 506 (pp. 359–366). Warrendale: Materials Research Society.
Zurück zum Zitat Lee, K., et al. (2010). Higher-accuracy van der Waals density functional. Physical Review B, 82, 081101(R).CrossRef Lee, K., et al. (2010). Higher-accuracy van der Waals density functional. Physical Review B, 82, 081101(R).CrossRef
Zurück zum Zitat Myshakin, E. M., et al. (2013). Molecular dynamics simulations of carbon dioxide intercalation in hydrated Na-montmorillonite. Journal of Physical Chemistry C, 117(21), 11028–11039.CrossRef Myshakin, E. M., et al. (2013). Molecular dynamics simulations of carbon dioxide intercalation in hydrated Na-montmorillonite. Journal of Physical Chemistry C, 117(21), 11028–11039.CrossRef
Zurück zum Zitat Newton, A. G., & Sposito, G. (2015). Molecular dynamics simulations of pyrophyllite edge surfaces: Structure, surface energies, and solvent accessibility. Clays and Clay Minerals, 63(4), 277–289.CrossRef Newton, A. G., & Sposito, G. (2015). Molecular dynamics simulations of pyrophyllite edge surfaces: Structure, surface energies, and solvent accessibility. Clays and Clay Minerals, 63(4), 277–289.CrossRef
Zurück zum Zitat Sainz-Díaz, C. I., Hernández-Laguna, A., & Dove, M. T. (2001). Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Physics and Chemistry of Minerals, 28(2), 130–141.CrossRef Sainz-Díaz, C. I., Hernández-Laguna, A., & Dove, M. T. (2001). Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Physics and Chemistry of Minerals, 28(2), 130–141.CrossRef
Zurück zum Zitat Tavernelli, I., Lin, I. C., & Rothlisberger, U. (2009). Multicenter-type corrections to standard DFT exchange and correlation functionals. Physical Review B, 79, 045106.CrossRef Tavernelli, I., Lin, I. C., & Rothlisberger, U. (2009). Multicenter-type corrections to standard DFT exchange and correlation functionals. Physical Review B, 79, 045106.CrossRef
Zurück zum Zitat Teich-McGoldrick, S. L., Greathouse, J. A., Jové Colón, C. F., & Cygan, R. T. (2015). Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects. Journal of Physical Chemistry C, 119(36), 20880–20891.CrossRef Teich-McGoldrick, S. L., Greathouse, J. A., Jové Colón, C. F., & Cygan, R. T. (2015). Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature, interlayer cation, and charge location effects. Journal of Physical Chemistry C, 119(36), 20880–20891.CrossRef
Zurück zum Zitat Teppen, B. J., et al. (1997). Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101(9), 1579–1587.CrossRef Teppen, B. J., et al. (1997). Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101(9), 1579–1587.CrossRef
Zurück zum Zitat Tkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7), 073005.CrossRef Tkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7), 073005.CrossRef
Zurück zum Zitat van der Spoel, D., van Maaren, P. J., & Berendsen, H. J. C. (1998). A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. Journal of Chemical Physics, 108(24), 10220–10230.CrossRef van der Spoel, D., van Maaren, P. J., & Berendsen, H. J. C. (1998). A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. Journal of Chemical Physics, 108(24), 10220–10230.CrossRef
Zurück zum Zitat Voora, V. K., Al-Saidi, W. A., & Jordan, K. D. (2011). Density Functional Theory study of Pyrophyllite and M-Montmorillonites (M = Li, Na, K, Mg, and Ca): Role of dispersion interactions. Journal of Physical Chemistry A, 115(34), 9695–9703.CrossRef Voora, V. K., Al-Saidi, W. A., & Jordan, K. D. (2011). Density Functional Theory study of Pyrophyllite and M-Montmorillonites (M = Li, Na, K, Mg, and Ca): Role of dispersion interactions. Journal of Physical Chemistry A, 115(34), 9695–9703.CrossRef
Zurück zum Zitat Voora, V. K., Al-Saidi, W. A., & Jordan, K. D. (2012). An assessment of the vdW-TS method for extended systems. Journal of Chemical Theory and Computation, 8(4), 1503–1513.CrossRef Voora, V. K., Al-Saidi, W. A., & Jordan, K. D. (2012). An assessment of the vdW-TS method for extended systems. Journal of Chemical Theory and Computation, 8(4), 1503–1513.CrossRef
Zurück zum Zitat Zeitler, T. R., Greathouse, J. A., Gale, J. D., & Cygan, R. T. (2014). Vibrational analysis of brucite surfaces and the development of an improved force field for molecular simulation of interfaces. Journal of Physical Chemistry C, 118(15), 7946–7953.CrossRef Zeitler, T. R., Greathouse, J. A., Gale, J. D., & Cygan, R. T. (2014). Vibrational analysis of brucite surfaces and the development of an improved force field for molecular simulation of interfaces. Journal of Physical Chemistry C, 118(15), 7946–7953.CrossRef
Zurück zum Zitat Zhang, Z., & Duan, Z. (2005). An optimized molecular potential for carbon dioxide. Journal of Chemical Physics, 122(21), 214507.CrossRef Zhang, Z., & Duan, Z. (2005). An optimized molecular potential for carbon dioxide. Journal of Chemical Physics, 122(21), 214507.CrossRef
Zurück zum Zitat Zhu, A. M., Zhang, X. B., Liu, Q. L., & Zhang, Q. G. (2009). A fully flexible potential model for carbon dioxide. Chinese Journal of Chemical Engineering, 17(2), 268–272.CrossRef Zhu, A. M., Zhang, X. B., Liu, Q. L., & Zhang, Q. G. (2009). A fully flexible potential model for carbon dioxide. Chinese Journal of Chemical Engineering, 17(2), 268–272.CrossRef
Metadaten
Titel
Advances in Molecular Simulation Studies of Clay Minerals
verfasst von
Randall T. Cygan
Evgeniy M. Myshakin
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-12661-6_9