Skip to main content

2018 | OriginalPaper | Buchkapitel

Advances in Sequencing and Resequencing in Crop Plants

verfasst von : Pradeep R. Marri, Liang Ye, Yi Jia, Ke Jiang, Steven D. Rounsley

Erschienen in: Plant Genetics and Molecular Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

DNA sequencing technologies have changed the face of biological research over the last 20 years. From reference genomes to population level resequencing studies, these technologies have made significant contributions to our understanding of plant biology and evolution. As the technologies have increased in power, the breadth and complexity of the questions that can be asked has increased. Along with this, the challenges of managing unprecedented quantities of sequence data are mounting. This chapter describes a few aspects of the journey so far and looks forward to what may lie ahead.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif) 6:287–303CrossRef Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif) 6:287–303CrossRef
3.
Zurück zum Zitat Goodwin S et al (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351CrossRefPubMed Goodwin S et al (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351CrossRefPubMed
5.
Zurück zum Zitat Li Z et al (2012) Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 11(1):25–37CrossRefPubMed Li Z et al (2012) Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 11(1):25–37CrossRefPubMed
7.
9.
Zurück zum Zitat Ewing B et al (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185CrossRefPubMed Ewing B et al (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185CrossRefPubMed
11.
Zurück zum Zitat Gnerre S et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518CrossRefPubMed Gnerre S et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518CrossRefPubMed
12.
Zurück zum Zitat Li R et al (2010) Building the sequence map of the human pan-genome. Nat Biotechnol 28(1):57–63CrossRefPubMed Li R et al (2010) Building the sequence map of the human pan-genome. Nat Biotechnol 28(1):57–63CrossRefPubMed
14.
Zurück zum Zitat Fleischmann RD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512CrossRefPubMed Fleischmann RD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512CrossRefPubMed
15.
Zurück zum Zitat Fraser CM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403CrossRefPubMed Fraser CM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403CrossRefPubMed
16.
Zurück zum Zitat Sutton GG et al (1995) TIGR assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci Technol 1(1):9–19CrossRef Sutton GG et al (1995) TIGR assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci Technol 1(1):9–19CrossRef
17.
18.
Zurück zum Zitat Matsumoto T et al (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800CrossRef Matsumoto T et al (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800CrossRef
19.
Zurück zum Zitat Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115CrossRef Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115CrossRef
20.
Zurück zum Zitat Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183CrossRefPubMed Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183CrossRefPubMed
21.
Zurück zum Zitat Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296(5565):92–100CrossRefPubMed Goff SA et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296(5565):92–100CrossRefPubMed
22.
23.
Zurück zum Zitat Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556CrossRef Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556CrossRef
24.
Zurück zum Zitat Vogel JP et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768CrossRef Vogel JP et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768CrossRef
25.
Zurück zum Zitat Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296(5565):79–92CrossRefPubMed Yu J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296(5565):79–92CrossRefPubMed
26.
Zurück zum Zitat Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6(2) Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6(2)
27.
Zurück zum Zitat Chalhoub B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953CrossRefPubMed Chalhoub B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953CrossRefPubMed
29.
Zurück zum Zitat Sato S et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641CrossRef Sato S et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641CrossRef
30.
Zurück zum Zitat Wang M et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46(9):982–988CrossRefPubMed Wang M et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46(9):982–988CrossRefPubMed
31.
Zurück zum Zitat International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788CrossRef International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788CrossRef
32.
Zurück zum Zitat Wang XW et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–U1157CrossRefPubMed Wang XW et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–U1157CrossRefPubMed
33.
Zurück zum Zitat Wang K et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103CrossRefPubMed Wang K et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103CrossRefPubMed
34.
Zurück zum Zitat Li FG et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6):567–572CrossRefPubMed Li FG et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6):567–572CrossRefPubMed
35.
Zurück zum Zitat Li YH et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052CrossRefPubMed Li YH et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052CrossRefPubMed
36.
Zurück zum Zitat Cao J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963CrossRefPubMed Cao J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963CrossRefPubMed
37.
Zurück zum Zitat Xu X et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111CrossRef Xu X et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111CrossRef
38.
Zurück zum Zitat Chia JM et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807CrossRefPubMed Chia JM et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807CrossRefPubMed
39.
Zurück zum Zitat Jiao Y et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815CrossRefPubMed Jiao Y et al (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815CrossRefPubMed
40.
Zurück zum Zitat Patil G et al (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199CrossRefPubMedPubMedCentral Patil G et al (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199CrossRefPubMedPubMedCentral
41.
42.
Zurück zum Zitat Bradley P et al (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063CrossRefPubMedPubMedCentral Bradley P et al (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Brozynska M et al (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085CrossRefPubMed Brozynska M et al (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085CrossRefPubMed
44.
Zurück zum Zitat Leung H et al (2015) Allele mining and enhanced genetic recombination for rice breeding. Rice (N Y) 8(1):34CrossRef Leung H et al (2015) Allele mining and enhanced genetic recombination for rice breeding. Rice (N Y) 8(1):34CrossRef
45.
Zurück zum Zitat Yang J et al (2015) Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J 84(3):587–596CrossRefPubMed Yang J et al (2015) Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J 84(3):587–596CrossRefPubMed
46.
Zurück zum Zitat Schatz MC et al (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15(11):506PubMedPubMedCentral Schatz MC et al (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15(11):506PubMedPubMedCentral
47.
Zurück zum Zitat Genomes Project Consortium et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073CrossRef Genomes Project Consortium et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073CrossRef
48.
Zurück zum Zitat Genomes Project Consortium et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65CrossRef Genomes Project Consortium et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65CrossRef
49.
Zurück zum Zitat Genomes Project Consortium et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74CrossRef Genomes Project Consortium et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74CrossRef
52.
Zurück zum Zitat Knaus BJ, Grunwald NJ (2016) VCFR: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour 17(1):44–53CrossRefPubMed Knaus BJ, Grunwald NJ (2016) VCFR: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour 17(1):44–53CrossRefPubMed
53.
Zurück zum Zitat Cingolani P et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92CrossRef Cingolani P et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92CrossRef
56.
58.
Zurück zum Zitat Donlin MJ (2009) Using the generic genome browser (GBrowse). Curr Protoc Bioinformatics Chapter 9: Unit 9.9 Donlin MJ (2009) Using the generic genome browser (GBrowse). Curr Protoc Bioinformatics Chapter 9: Unit 9.9
61.
Zurück zum Zitat Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120CrossRefPubMed Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120CrossRefPubMed
63.
64.
Zurück zum Zitat Berlin K et al (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing (vol 33, pg 623, 2015). Nat Biotechnol 33(10):1109–1109CrossRefPubMed Berlin K et al (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing (vol 33, pg 623, 2015). Nat Biotechnol 33(10):1109–1109CrossRefPubMed
65.
66.
Zurück zum Zitat Koren S et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):692–700CrossRef Koren S et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):692–700CrossRef
67.
Zurück zum Zitat Sakai H et al (2015) The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci Rep 5:16780CrossRefPubMedPubMedCentral Sakai H et al (2015) The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci Rep 5:16780CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Benitez-Paez A et al (2016) Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION (TM) portable nanopore sequencer. Gigascience 5:4CrossRefPubMedPubMedCentral Benitez-Paez A et al (2016) Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION (TM) portable nanopore sequencer. Gigascience 5:4CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Ammar R et al (2015) Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res 4:17PubMedPubMedCentral Ammar R et al (2015) Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res 4:17PubMedPubMedCentral
71.
Zurück zum Zitat Chin CS et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563CrossRefPubMed Chin CS et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563CrossRefPubMed
72.
Zurück zum Zitat Gore MA et al (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117CrossRefPubMed Gore MA et al (2009) A first-generation haplotype map of maize. Science 326(5956):1115–1117CrossRefPubMed
73.
Zurück zum Zitat Li H (2016) BGT: efficient and flexible genotype query across many samples. Bioinformatics 32(4):590–592CrossRefPubMed Li H (2016) BGT: efficient and flexible genotype query across many samples. Bioinformatics 32(4):590–592CrossRefPubMed
74.
Zurück zum Zitat Belton JM et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3):268–276CrossRefPubMed Belton JM et al (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3):268–276CrossRefPubMed
75.
Zurück zum Zitat van Berkum NL et al (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 39 van Berkum NL et al (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 39
Metadaten
Titel
Advances in Sequencing and Resequencing in Crop Plants
verfasst von
Pradeep R. Marri
Liang Ye
Yi Jia
Ke Jiang
Steven D. Rounsley
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/10_2017_46

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.