Skip to main content

2020 | OriginalPaper | Buchkapitel

Adversarial Examples for Hardware-Trojan Detection at Gate-Level Netlists

verfasst von : Kohei Nozawa, Kento Hasegawa, Seira Hidano, Shinsaku Kiyomoto, Kazuo Hashimoto, Nozomu Togawa

Erschienen in: Computer Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, due to the increase of outsourcing in integrated circuit (IC) design and manufacturing, the threat of injecting a malicious circuit, called a hardware Trojan, by third party has been increasing. Machine learning has been known to produce a powerful model to detect hardware Trojans. But it is recently reported that such a machine learning based detection is weak against adversarial examples (AEs), which cause misclassification by adding perturbation in input data. Referring to the existing studies on adversarial examples, most of which are discussed in the field of image processing, this paper first proposes a framework generating adversarial examples for hardware-Trojan detection for gate-level netlists utilizing neural networks. The proposed framework replaces hardware Trojan circuits with logically equivalent circuits, and makes it difficult to detect them. Second, we define Trojan-net concealment degree (TCD) as a possibility of misclassification, and modification evaluating value (MEV) as a measure of the amount of modifications. Third, judging from MEV, we pick up adversarial modification patterns to apply to the circuits against hardware-Trojan detection. The experimental results using benchmarks demonstrate that the proposed framework successfully decreases true positive rate (TPR) by at most 30.15 points.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The number of Trojan nets identified as Trojan nets is called as true positive (TP). The number of Trojan nets identified as normal nets is called as false negative (FN). The true positive rate is obtained from TP / (TP + FN).
 
2
The number of normal nets identified as normal nets is called as true negative (TN). The number of normal nets identified as Trojan nets is called as false positive (FP). The true negative rate is obtained from TN/(TN + FP).
 
Literatur
1.
Zurück zum Zitat Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)CrossRef Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)CrossRef
2.
Zurück zum Zitat Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)CrossRef Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)CrossRef
3.
Zurück zum Zitat Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-to-text. In: 2018 IEEE Security and Privacy Workshops (SPW) (2018) Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-to-text. In: 2018 IEEE Security and Privacy Workshops (SPW) (2018)
4.
Zurück zum Zitat Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and emerging solutions. In: Proceedings of International High-Level Design Validation and Test Workshop (HLDVT), pp. 166–171 (2009) Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and emerging solutions. In: Proceedings of International High-Level Design Validation and Test Workshop (HLDVT), pp. 166–171 (2009)
5.
Zurück zum Zitat Dai, H., et al.: Adversarial attack on graph structured data. In: Proceedings of International Conference on Machine Learning (ICML) (2018) Dai, H., et al.: Adversarial attack on graph structured data. In: Proceedings of International Conference on Machine Learning (ICML) (2018)
6.
Zurück zum Zitat Dong, C., He, G., Liu, X., Yang, Y., Guo, W.: A multi-layer hardware trojan protection framework for IoT chips. IEEE Access 7, 23628–23639 (2019)CrossRef Dong, C., He, G., Liu, X., Yang, Y., Guo, W.: A multi-layer hardware trojan protection framework for IoT chips. IEEE Access 7, 23628–23639 (2019)CrossRef
7.
Zurück zum Zitat Eykholt, K., et al.: Physical adversarial examples for object detectors. CoRR (2018) Eykholt, K., et al.: Physical adversarial examples for object detectors. CoRR (2018)
8.
Zurück zum Zitat Eykholt, K., et al.: Robust physical-world attacks on deep learning models. CoRR (2017) Eykholt, K., et al.: Robust physical-world attacks on deep learning models. CoRR (2017)
9.
Zurück zum Zitat Francq, J., Frick, F.: Introduction to hardware Trojan detection methods. In: 2015 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 770–775. EDAA (2015) Francq, J., Frick, F.: Introduction to hardware Trojan detection methods. In: 2015 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 770–775. EDAA (2015)
10.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Proceedings of 2015 International Conference on Learning Representations (ICLR) (2015) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Proceedings of 2015 International Conference on Learning Representations (ICLR) (2015)
12.
Zurück zum Zitat Hasegawa, K., Yanagisawa, M., Togawa, N.: Hardware Trojans classification for gate-level netlists using multi-layer neural networks. In: Proceedings of 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 227–232 (2017) Hasegawa, K., Yanagisawa, M., Togawa, N.: Hardware Trojans classification for gate-level netlists using multi-layer neural networks. In: Proceedings of 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 227–232 (2017)
13.
Zurück zum Zitat Inoue, T., Hasegawa, K., Yanagisawa, M., Togawa, N.: Designing hardware Trojans and their detection based on a SVM-based approach. In: Proceedings of International Conference on ASIC, pp. 811–814 (2018) Inoue, T., Hasegawa, K., Yanagisawa, M., Togawa, N.: Designing hardware Trojans and their detection based on a SVM-based approach. In: Proceedings of International Conference on ASIC, pp. 811–814 (2018)
14.
Zurück zum Zitat Inoue, T., Hasegawa, K., Yanagisawa, M., Togawa, N.: Designing subspecies of hardware Trojans and their detection using neural network approach. In: Proceedings 2018 IEEE 8th International Conference on Consumer Electronics in Berlin (ICCE-Berlin) (2018) Inoue, T., Hasegawa, K., Yanagisawa, M., Togawa, N.: Designing subspecies of hardware Trojans and their detection using neural network approach. In: Proceedings 2018 IEEE 8th International Conference on Consumer Electronics in Berlin (ICCE-Berlin) (2018)
15.
Zurück zum Zitat Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1875–1885. Association for Computational Linguistics (2018) Iyyer, M., Wieting, J., Gimpel, K., Zettlemoyer, L.: Adversarial example generation with syntactically controlled paraphrase networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1875–1885. Association for Computational Linguistics (2018)
16.
Zurück zum Zitat Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2021–2031. Association for Computational Linguistics (2017) Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2021–2031. Association for Computational Linguistics (2017)
17.
Zurück zum Zitat Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In: Proceedings of IEEE International Workshop on Hardware-Oriented Security and Trust (HOST), pp. 51–57 (2008) Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In: Proceedings of IEEE International Workshop on Hardware-Oriented Security and Trust (HOST), pp. 51–57 (2008)
18.
Zurück zum Zitat Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Proceedings of 2017 International Conference on Learning Representations (ICLR) (2017) Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Proceedings of 2017 International Conference on Learning Representations (ICLR) (2017)
19.
Zurück zum Zitat Lamech, C., Plusquellic, J.: Trojan detection based on delay variations measured using a high-precision, low-overhead embedded test structure. In: 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 75–82, June 2012 Lamech, C., Plusquellic, J.: Trojan detection based on delay variations measured using a high-precision, low-overhead embedded test structure. In: 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 75–82, June 2012
20.
Zurück zum Zitat Liu, B., Qu, G.: VLSI supply chain security risks and mitigation techniques: a survey. Integr. VLSI J. 55, 438–448 (2016)CrossRef Liu, B., Qu, G.: VLSI supply chain security risks and mitigation techniques: a survey. Integr. VLSI J. 55, 438–448 (2016)CrossRef
21.
Zurück zum Zitat Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimization. Math. Program. 45(1), 503–528 (1989)MathSciNetCrossRef Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimization. Math. Program. 45(1), 503–528 (1989)MathSciNetCrossRef
22.
Zurück zum Zitat Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016) Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)
23.
Zurück zum Zitat Oya, M., Shi, Y., Yanagisawa, M., Togawa, N.: A score-based classification method for identifying hardware-Trojans at gate-level netlists. In: Proceedings of 2015 Design, Automation and Test in Europe Conference and Exhibition, pp. 465–470 (2015) Oya, M., Shi, Y., Yanagisawa, M., Togawa, N.: A score-based classification method for identifying hardware-Trojans at gate-level netlists. In: Proceedings of 2015 Design, Automation and Test in Europe Conference and Exhibition, pp. 465–470 (2015)
24.
Zurück zum Zitat Rostami, M., Koushanfar, F., Rajendran, J., Karri, R.: Hardware security: threat models and metrics. In: Proceedings of International Conference on Computer-Aided Design (ICCAD), pp. 819–823 (2013) Rostami, M., Koushanfar, F., Rajendran, J., Karri, R.: Hardware security: threat models and metrics. In: Proceedings of International Conference on Computer-Aided Design (ICCAD), pp. 819–823 (2013)
25.
Zurück zum Zitat Salmani, H., Tehranipoor, M., Karri, R.: On design vulnerability analysis and trust benchmarks development. In: 2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 471–474 (2013) Salmani, H., Tehranipoor, M., Karri, R.: On design vulnerability analysis and trust benchmarks development. In: 2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 471–474 (2013)
26.
Zurück zum Zitat Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S., Tehranipoor, M.: Benchmarking of hardware trojans and maliciously affected circuits. J. Hardware Syst. Secur. 1(1), 85–102 (2017)CrossRef Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S., Tehranipoor, M.: Benchmarking of hardware trojans and maliciously affected circuits. J. Hardware Syst. Secur. 1(1), 85–102 (2017)CrossRef
27.
Zurück zum Zitat Szegedy, C., et al.: Intriguing properties of neural networks. CoRR (2013) Szegedy, C., et al.: Intriguing properties of neural networks. CoRR (2013)
29.
Zurück zum Zitat Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M.: Hardware trojans: lessons learned after one decade of research. ACM Trans. Design Autom. Electron. Syst. (TODAES) 22(1), 1–23 (2016)CrossRef Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M.: Hardware trojans: lessons learned after one decade of research. ACM Trans. Design Autom. Electron. Syst. (TODAES) 22(1), 1–23 (2016)CrossRef
30.
Zurück zum Zitat Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2018, pp. 2847–2856. ACM Press (2018) Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2018, pp. 2847–2856. ACM Press (2018)
Metadaten
Titel
Adversarial Examples for Hardware-Trojan Detection at Gate-Level Netlists
verfasst von
Kohei Nozawa
Kento Hasegawa
Seira Hidano
Shinsaku Kiyomoto
Kazuo Hashimoto
Nozomu Togawa
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-42048-2_22