Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2015

01.02.2015 | Research Paper

Ag nanoparticles formed by femtosecond pulse laser ablation in water: self-assembled fractal structures

verfasst von: Jesica M. J. Santillán, Marcela B. Fernández van Raap, Pedro Mendoza Zélis, Diego Coral, Diego Muraca, Daniel C. Schinca, Lucía B. Scaffardi

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report for the first time on the formation of self-assembled fractals of spherical Ag nanoparticles (Nps) fabricated by femtosecond pulse laser ablation of a solid silver target in water. Fractal structures grew both in two and three Euclidean dimensions (d). Ramified-fractal assemblies of 2 nm height and 5–14 μm large, decorated with Ag Nps of 3 nm size, were obtained in a 2d geometry when highly diluted drops of colloidal suspension were dried at a fast heating rate over a mica substrate. When less-diluted drops were dried at slow heating rate, isolated single Nps or rosette-like structures were formed. Fractal aggregates about 31 nm size in 3d geometry were observed in the as-prepared colloidal suspension. Electron diffraction and optical extinction spectroscopy (OES) analyses performed on the samples confirmed the presence of Ag and Ag2O. The analysis of the optical extinction spectrum, using the electrostatic approximation of Mie theory for small spheres, showed the existence of Ag bare core, Ag–Ag2O and air–Ag core–shell Nps, Ag–Ag2O being the most frequent type [69 % relative abundance (r.a.)]. Core-size and shell-thickness distribution was derived from OES. In situ scattering measurements of the Ag colloidal suspension, carried out by small-angle X-ray scattering, indicate a mass fractal composed of packaged 〈D SAXS〉 = (5 ± 1) nm particles and fractal dimension d f = 2.5. Ex situ atomic force microscopy imaging displayed well-ramified structures, which, analyzed with box-counting method, yield a fractal dimension d f = 1.67. The growing behavior of these 2d and 3d self-assembled fractals is consistent with the diffusion-limited aggregation model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instrum 71(8):3178–3183CrossRef Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instrum 71(8):3178–3183CrossRef
Zurück zum Zitat Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87(1):47–55CrossRef Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87(1):47–55CrossRef
Zurück zum Zitat Ben Moshe A, Markovich G (2011) Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process. Chem Mater 23(5):1239–1245CrossRef Ben Moshe A, Markovich G (2011) Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process. Chem Mater 23(5):1239–1245CrossRef
Zurück zum Zitat Bewig L, Buck U, Mehlmann Ch, Winter M (1992) Seeded supersonic alkali cluster beam source with refilling system. Rev Sci Instrum 63(8):3936–3938CrossRef Bewig L, Buck U, Mehlmann Ch, Winter M (1992) Seeded supersonic alkali cluster beam source with refilling system. Rev Sci Instrum 63(8):3936–3938CrossRef
Zurück zum Zitat Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRef Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRef
Zurück zum Zitat Cavaliere E, Ferrini G, Pingue P, Gavioli L (2013) Fractal TiO2 nanostructures by nonthermal laser ablation ambient pressure. J Phys Chem C 117(44):23305–23312CrossRef Cavaliere E, Ferrini G, Pingue P, Gavioli L (2013) Fractal TiO2 nanostructures by nonthermal laser ablation ambient pressure. J Phys Chem C 117(44):23305–23312CrossRef
Zurück zum Zitat Chen S-H, Teixeira J (1986) Structure and fractal dimension of protein–detergent complexes. Phys Rev Lett 57(20):2583–2586CrossRef Chen S-H, Teixeira J (1986) Structure and fractal dimension of protein–detergent complexes. Phys Rev Lett 57(20):2583–2586CrossRef
Zurück zum Zitat Desarkar HS, Kumbhakar P, Mitra AK (2013) One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique. Laser Phys Lett 10(5):055903–055908CrossRef Desarkar HS, Kumbhakar P, Mitra AK (2013) One-step synthesis of Zn/ZnO hollow nanoparticles by the laser ablation in liquid technique. Laser Phys Lett 10(5):055903–055908CrossRef
Zurück zum Zitat Ding H-P, Xin G-Q, Chen K-C, Zhang M, Liu Q, Hao J, Liu H-G (2010) Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition. Colloids Surf A 353(2–3):166–171CrossRef Ding H-P, Xin G-Q, Chen K-C, Zhang M, Liu Q, Hao J, Liu H-G (2010) Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition. Colloids Surf A 353(2–3):166–171CrossRef
Zurück zum Zitat Dong J, Gong J, Liu J, Chen M, Yan X (2012) The decoration of silver fractal-like nanostructure with Ag nanoparticles on the plastic slide for surface enhanced fluorescence. Electrochim Acta 60:264–268CrossRef Dong J, Gong J, Liu J, Chen M, Yan X (2012) The decoration of silver fractal-like nanostructure with Ag nanoparticles on the plastic slide for surface enhanced fluorescence. Electrochim Acta 60:264–268CrossRef
Zurück zum Zitat Fernández van Raap MB, Mendoza Zélis P, Coral DF, Torres TE, Marquina C, Goya GF, Sánchez FH (2012) Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study. J Nanopart Res 14:1072CrossRef Fernández van Raap MB, Mendoza Zélis P, Coral DF, Torres TE, Marquina C, Goya GF, Sánchez FH (2012) Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study. J Nanopart Res 14:1072CrossRef
Zurück zum Zitat Freltoft T, Kjems JK, Sinha SK (1986) Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering. Phys Rev B 33(1):269–275CrossRef Freltoft T, Kjems JK, Sinha SK (1986) Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering. Phys Rev B 33(1):269–275CrossRef
Zurück zum Zitat Hou SM, Ouyang M, Chen HF, Liu WM, Xue ZQ, Wu QD, Zhang HX, Gao HJ, Pang SJ (1998) Fractal structure in the silver oxide thin film. Thin Solid Films 315(1–2):322–326CrossRef Hou SM, Ouyang M, Chen HF, Liu WM, Xue ZQ, Wu QD, Zhang HX, Gao HJ, Pang SJ (1998) Fractal structure in the silver oxide thin film. Thin Solid Films 315(1–2):322–326CrossRef
Zurück zum Zitat Ishii K, Amano K, Hamakake H (1999) Hollow cathode sputtering cluster source for low energy deposition: deposition of Fe small clusters. J Vac Sci Technol A 17(1):310–313CrossRef Ishii K, Amano K, Hamakake H (1999) Hollow cathode sputtering cluster source for low energy deposition: deposition of Fe small clusters. J Vac Sci Technol A 17(1):310–313CrossRef
Zurück zum Zitat Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef
Zurück zum Zitat Kabashin AV, Meunier M (2006) Laser ablation based synthesis of nanomaterials. In: Perrière J, Millon E, Fogarassy E (eds) Recent advances in laser processing of materials. Elsevier, Oxford, pp 1–36 Kabashin AV, Meunier M (2006) Laser ablation based synthesis of nanomaterials. In: Perrière J, Millon E, Fogarassy E (eds) Recent advances in laser processing of materials. Elsevier, Oxford, pp 1–36
Zurück zum Zitat Kittel C (2007) Introduction to solid state physics. Wiley, New York Kittel C (2007) Introduction to solid state physics. Wiley, New York
Zurück zum Zitat Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRef Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRef
Zurück zum Zitat Li J, Du Q, Sun C (2009) An improved box-counting method for image fractal dimension estimation. Pattern Recognit 42(11):2460–2469CrossRef Li J, Du Q, Sun C (2009) An improved box-counting method for image fractal dimension estimation. Pattern Recognit 42(11):2460–2469CrossRef
Zurück zum Zitat Liu B, Wang M (2013) Electrodeposition of dendritic silver nanostructures and their application as hydrogen peroxide sensor. Int J Electrochem Sci 8(6):8572–8578 Liu B, Wang M (2013) Electrodeposition of dendritic silver nanostructures and their application as hydrogen peroxide sensor. Int J Electrochem Sci 8(6):8572–8578
Zurück zum Zitat Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107(34):8829–8833CrossRef Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107(34):8829–8833CrossRef
Zurück zum Zitat Qiu JH, Zhou P, Gao XY, Yu JN, Wang SY, Li J, Zheng YX, Yang YM, Song QH, Chen LY (2005) Ellipsometric study of the optical properties of silver oxide prepared by reactive magnetron sputtering. J Korean Phys Soc 46:S269–S275 Qiu JH, Zhou P, Gao XY, Yu JN, Wang SY, Li J, Zheng YX, Yang YM, Song QH, Chen LY (2005) Ellipsometric study of the optical properties of silver oxide prepared by reactive magnetron sputtering. J Korean Phys Soc 46:S269–S275
Zurück zum Zitat Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19(17):4174–4180CrossRef Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19(17):4174–4180CrossRef
Zurück zum Zitat Qiu R, Cha HG, Noh HB, Shim YB, Zhang XL, Qiao R, Zhang D, Kim YI, Pal U, Kang YS (2009) Preparation of dendritic copper nanostructures and their characterization for electroreduction. J Phys Chem C 113(36):15891–15896CrossRef Qiu R, Cha HG, Noh HB, Shim YB, Zhang XL, Qiao R, Zhang D, Kim YI, Pal U, Kang YS (2009) Preparation of dendritic copper nanostructures and their characterization for electroreduction. J Phys Chem C 113(36):15891–15896CrossRef
Zurück zum Zitat Qu L, Dai L (2005) Novel silver nanostructures from silver mirror reaction on reactive substrates. J Phys Chem B 109(29):13985–13990CrossRef Qu L, Dai L (2005) Novel silver nanostructures from silver mirror reaction on reactive substrates. J Phys Chem B 109(29):13985–13990CrossRef
Zurück zum Zitat Santillán JMJ, Videla FA, Fernández van Raap MB, Schinca DC, Scaffardi LB (2012) Size dependent Cu dielectric function for plasmon spectroscopy: characterization of colloidal suspensions generated by fs laser ablation. J Appl Phys 112(5):054319CrossRef Santillán JMJ, Videla FA, Fernández van Raap MB, Schinca DC, Scaffardi LB (2012) Size dependent Cu dielectric function for plasmon spectroscopy: characterization of colloidal suspensions generated by fs laser ablation. J Appl Phys 112(5):054319CrossRef
Zurück zum Zitat Santillán JMJ, Videla FA, Fernández van Raap MB, Muraca D, Scaffardi LB, Schinca DC (2013a) Influence of size-corrected bound-electron contribution on nanometric silver dielectric function Sizing through optical extinction spectroscopy. J Phys D 46(43):435301CrossRef Santillán JMJ, Videla FA, Fernández van Raap MB, Muraca D, Scaffardi LB, Schinca DC (2013a) Influence of size-corrected bound-electron contribution on nanometric silver dielectric function Sizing through optical extinction spectroscopy. J Phys D 46(43):435301CrossRef
Zurück zum Zitat Santillán JMJ, Videla FA, Fernández van Raap MB, Schinca DC, Scaffardi LB (2013b) Analysis of the structure, configuration and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J Appl Phys 113(13):134305CrossRef Santillán JMJ, Videla FA, Fernández van Raap MB, Schinca DC, Scaffardi LB (2013b) Analysis of the structure, configuration and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J Appl Phys 113(13):134305CrossRef
Zurück zum Zitat Scaffardi LB, Schinca DC, Lester M, Videla FA, Santillán JMJ, Abraham Ekeroth RM (2013c) Size-dependent optical properties of metallic nanostructures. In: Challa SSR (ed) Kumar UV–vis and photoluminescence spectroscopy for nanomaterials characterization. Springer, Heidelberg, pp 179–229CrossRef Scaffardi LB, Schinca DC, Lester M, Videla FA, Santillán JMJ, Abraham Ekeroth RM (2013c) Size-dependent optical properties of metallic nanostructures. In: Challa SSR (ed) Kumar UV–vis and photoluminescence spectroscopy for nanomaterials characterization. Springer, Heidelberg, pp 179–229CrossRef
Zurück zum Zitat Schaefer DW, Martin JE, Wiltzius P, Cannell DS (1984) Fractal geometry of colloidal aggregates. Phys Rev Lett 52(26):2371–2374CrossRef Schaefer DW, Martin JE, Wiltzius P, Cannell DS (1984) Fractal geometry of colloidal aggregates. Phys Rev Lett 52(26):2371–2374CrossRef
Zurück zum Zitat Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001CrossRef Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001CrossRef
Zurück zum Zitat Selvakannan PR, Sastry M (2005) Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun 13:1684–1686CrossRef Selvakannan PR, Sastry M (2005) Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun 13:1684–1686CrossRef
Zurück zum Zitat Shelke PB, Nguyen VD, Limaye AV, Schall P (2013) Controlling colloidal morphologies by critical Casimir forces. Adv Mater 25(10):1499–1503CrossRef Shelke PB, Nguyen VD, Limaye AV, Schall P (2013) Controlling colloidal morphologies by critical Casimir forces. Adv Mater 25(10):1499–1503CrossRef
Zurück zum Zitat Siekmann HR, Lüder Ch, Faehrmann J, Lutz HO, Meiwes-Broer KH (1991) The pulsed arc cluster ion source (PACIS). Z Phys D 20:417–420CrossRef Siekmann HR, Lüder Ch, Faehrmann J, Lutz HO, Meiwes-Broer KH (1991) The pulsed arc cluster ion source (PACIS). Z Phys D 20:417–420CrossRef
Zurück zum Zitat Singh M, Sinha I, Singh AK, Mandal RK (2011) Formation of fractal aggregates during green synthesis of silver nanoparticles. J Nanopart Res 13:69–76CrossRef Singh M, Sinha I, Singh AK, Mandal RK (2011) Formation of fractal aggregates during green synthesis of silver nanoparticles. J Nanopart Res 13:69–76CrossRef
Zurück zum Zitat Sun X, Hagner M (2007) Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route. Langmuir 23(18):9147–9150CrossRef Sun X, Hagner M (2007) Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route. Langmuir 23(18):9147–9150CrossRef
Zurück zum Zitat Tokuyama M, Kawasaki K (1984) Fractal dimensions for diffusion-limited aggregation. Phys Lett A 100(7):337–340CrossRef Tokuyama M, Kawasaki K (1984) Fractal dimensions for diffusion-limited aggregation. Phys Lett A 100(7):337–340CrossRef
Zurück zum Zitat Wagener P, Ibrahimkutty S, Menzel A, Plech A, Barcikowski S (2013) Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys Chem Chem Phys 15(9):3068–3074CrossRef Wagener P, Ibrahimkutty S, Menzel A, Plech A, Barcikowski S (2013) Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys Chem Chem Phys 15(9):3068–3074CrossRef
Zurück zum Zitat Wang Y, Camargo PHC, Skrabalak SE, Gu H, Xia YA (2008) Facile, water-based synthesis of highly branched nanostructures of silver. Langmuir 24(20):12042–12046CrossRef Wang Y, Camargo PHC, Skrabalak SE, Gu H, Xia YA (2008) Facile, water-based synthesis of highly branched nanostructures of silver. Langmuir 24(20):12042–12046CrossRef
Zurück zum Zitat Wen X, Xie YT, Mak MWC, Cheung KY, Li XY, Renneberg R, Yang S (2006) Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22(10):4836–4842CrossRef Wen X, Xie YT, Mak MWC, Cheung KY, Li XY, Renneberg R, Yang S (2006) Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22(10):4836–4842CrossRef
Zurück zum Zitat Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C 13(3):204–223CrossRef Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C 13(3):204–223CrossRef
Zurück zum Zitat Yan Z, Bao R, Chrisey DB (2013) Generation of Ag–Ag2O complex nanostructures by excimer laser ablation of Ag in water. Phys Chem Chem Phys 15(9):3052–3056CrossRef Yan Z, Bao R, Chrisey DB (2013) Generation of Ag–Ag2O complex nanostructures by excimer laser ablation of Ag in water. Phys Chem Chem Phys 15(9):3052–3056CrossRef
Zurück zum Zitat Zenkevich AV, Pushkin MA, Tronin VN, Troyan VI, Nevolin VN, Maximov GA, Filatov DO, Lægsgaard E (2002) Formation of Au fractal nanoclusters during pulsed laser deposition on highly oriented pyrolitic graphite. Phys Rev B 65:073406CrossRef Zenkevich AV, Pushkin MA, Tronin VN, Troyan VI, Nevolin VN, Maximov GA, Filatov DO, Lægsgaard E (2002) Formation of Au fractal nanoclusters during pulsed laser deposition on highly oriented pyrolitic graphite. Phys Rev B 65:073406CrossRef
Zurück zum Zitat Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater 11(10):850–852CrossRef Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater 11(10):850–852CrossRef
Metadaten
Titel
Ag nanoparticles formed by femtosecond pulse laser ablation in water: self-assembled fractal structures
verfasst von
Jesica M. J. Santillán
Marcela B. Fernández van Raap
Pedro Mendoza Zélis
Diego Coral
Diego Muraca
Daniel C. Schinca
Lucía B. Scaffardi
Publikationsdatum
01.02.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-2894-8

Weitere Artikel der Ausgabe 2/2015

Journal of Nanoparticle Research 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.