Skip to main content

2019 | OriginalPaper | Buchkapitel

7. Al-Rich III-Nitride Materials and Ultraviolet Light-Emitting Diodes

verfasst von : Jianchang Yan, Junxi Wang, Yuhuai Liu, Jinmin Li

Erschienen in: Light-Emitting Diodes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum nitride (AlN) material is commonly used as a crucial template for the growth of high-quality Al-rich III-nitride materials and high-performance deep-ultraviolet light-emitting diodes (DUV LEDs). In this chapter, the heteroepitaxy of AlN film by MOVPE and the development of AlN epitaxy techniques on sapphire substrates are discussed. The structural design for efficient DUV LEDs is then introduced. Since bulk AlN substrates are a perfect candidate for AlGaN-based DUV LEDs due to similar thermal expansion coefficients and relatively small lattice mismatches, we also discussed AlN homoepitaxy, pseudomorphic AlGaN, and DUV LEDs on AlN substrates. The limited light extraction efficiency (LEE) is another obstacle for power DUV LEDs and their applications. The intrinsic Al-rich-induced optical polarization effect and related methods for improving the LEE are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.H. Chen et al., A study of parasitic reactions between NH3 and TMGa or TMAI. J. Electron. Mater. 25(6), 1004–1008 (1996)MathSciNet C.H. Chen et al., A study of parasitic reactions between NH3 and TMGa or TMAI. J. Electron. Mater. 25(6), 1004–1008 (1996)MathSciNet
2.
Zurück zum Zitat M.A. Khan et al., III-nitride UV devices. Jpn. J. Appl. Phys. 44(10), 7191–7206 (2005) M.A. Khan et al., III-nitride UV devices. Jpn. J. Appl. Phys. 44(10), 7191–7206 (2005)
3.
Zurück zum Zitat T. Uchida, K. Kusakabe, K. Ohkawa, Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN. J. Cryst. Growth 304(1), 133–140 (2007) T. Uchida, K. Kusakabe, K. Ohkawa, Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN. J. Cryst. Growth 304(1), 133–140 (2007)
4.
Zurück zum Zitat D.G. Zhao et al., Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition. J. Cryst. Growth 289(1), 72–75 (2006) D.G. Zhao et al., Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition. J. Cryst. Growth 289(1), 72–75 (2006)
5.
Zurück zum Zitat S. Kim et al., Growth of AlGaN epilayers related gas-phase reactions using TPIS-MOCVD. J. Cryst. Growth 245(3–4), 247–253 (2002) S. Kim et al., Growth of AlGaN epilayers related gas-phase reactions using TPIS-MOCVD. J. Cryst. Growth 245(3–4), 247–253 (2002)
6.
Zurück zum Zitat J.R. Creighton, G.T. Wang, Kinetics of metal organic-ammonia adduct decomposition: Implications for group-III nitride MOCVD. J. Phys. Chem. A 109(46), 10554–10562 (2005) J.R. Creighton, G.T. Wang, Kinetics of metal organic-ammonia adduct decomposition: Implications for group-III nitride MOCVD. J. Phys. Chem. A 109(46), 10554–10562 (2005)
7.
Zurück zum Zitat J.R. Creighton, G.T. Wang, M.E. Coltrin, Fundamental chemistry and modeling of group-III nitride MOVPE. J. Cryst. Growth 298, 2–7 (2007) J.R. Creighton, G.T. Wang, M.E. Coltrin, Fundamental chemistry and modeling of group-III nitride MOVPE. J. Cryst. Growth 298, 2–7 (2007)
8.
Zurück zum Zitat H. Yang et al., Alleviation of parasitic reactions for III-nitride epitaxy in MOCVD with a spatial separated source delivery method by controlling the main reaction type. J. Cryst. Growth 465, 1–5 (2017) H. Yang et al., Alleviation of parasitic reactions for III-nitride epitaxy in MOCVD with a spatial separated source delivery method by controlling the main reaction type. J. Cryst. Growth 465, 1–5 (2017)
9.
Zurück zum Zitat R. Zuo et al., Influence of gas mixing and heating on gas-phase reactions in GaN MOCVD growth. ECS J. Solid State Sci. Technol. 1(1), P46–P53 (2012) R. Zuo et al., Influence of gas mixing and heating on gas-phase reactions in GaN MOCVD growth. ECS J. Solid State Sci. Technol. 1(1), P46–P53 (2012)
10.
Zurück zum Zitat T.G. Mihopoulos, V. Gupta, K.F. Jensen, A reaction-transport model for AlGaN MOVPE growth. J. Cryst. Growth 195(1–4), 733–739 (1998) T.G. Mihopoulos, V. Gupta, K.F. Jensen, A reaction-transport model for AlGaN MOVPE growth. J. Cryst. Growth 195(1–4), 733–739 (1998)
11.
Zurück zum Zitat R.P. Parikh, R.A. Adomaitis, An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system. J. Cryst. Growth 286(2), 259–278 (2006) R.P. Parikh, R.A. Adomaitis, An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system. J. Cryst. Growth 286(2), 259–278 (2006)
12.
Zurück zum Zitat H. Simka et al., Computational chemistry predictions of reaction processes in organometallic vapor phase epitaxy. Prog. Cryst. Growth Charact. Mater. 35(2–4), 117–149 (1997) H. Simka et al., Computational chemistry predictions of reaction processes in organometallic vapor phase epitaxy. Prog. Cryst. Growth Charact. Mater. 35(2–4), 117–149 (1997)
13.
Zurück zum Zitat R.M. Watwe, J.A. Dumesic, T.F. Kuech, Gas-phase chemistry of metalorganic and nitrogen-bearing compounds. J. Cryst. Growth 221, 751–757 (2000) R.M. Watwe, J.A. Dumesic, T.F. Kuech, Gas-phase chemistry of metalorganic and nitrogen-bearing compounds. J. Cryst. Growth 221, 751–757 (2000)
14.
Zurück zum Zitat G.T. Wang, J.R. Creighton, Complex formation of trimethylaluminum and trimethylgallium with ammonia: Evidence for a hydrogen-bonded adduct. J. Phys. Chem. A 110(3), 1094–1099 (2006) G.T. Wang, J.R. Creighton, Complex formation of trimethylaluminum and trimethylgallium with ammonia: Evidence for a hydrogen-bonded adduct. J. Phys. Chem. A 110(3), 1094–1099 (2006)
15.
Zurück zum Zitat K. Nakamura et al., Quantum chemical study of parasitic reaction in III-V nitride semiconductor crystal growth. J. Organomet. Chem. 611(1–2), 514–524 (2000) K. Nakamura et al., Quantum chemical study of parasitic reaction in III-V nitride semiconductor crystal growth. J. Organomet. Chem. 611(1–2), 514–524 (2000)
16.
Zurück zum Zitat A. Demchuk, S. Simpson, B. Koplitz, Exploration of the laser-assisted clustering and reactivity of trimethylaluminum with and without NH3. Chem. A Eur. J. 107(11), 1727–1733 (2003) A. Demchuk, S. Simpson, B. Koplitz, Exploration of the laser-assisted clustering and reactivity of trimethylaluminum with and without NH3. Chem. A Eur. J. 107(11), 1727–1733 (2003)
17.
Zurück zum Zitat J. Müller et al., Structure of ammonia trimethylalane (Me3Al-NH3): Microwave spectroscopy, x-ray powder diffraction, and ab initio calculations. J. Am. Chem. Soc. 121(19), 4647–4652 (1999) J. Müller et al., Structure of ammonia trimethylalane (Me3Al-NH3): Microwave spectroscopy, x-ray powder diffraction, and ab initio calculations. J. Am. Chem. Soc. 121(19), 4647–4652 (1999)
18.
Zurück zum Zitat A.S. Lisovenko, K. Morokuma, A.Y. Timoshkin, Initial gas phase reactions between Al(CH3)3/AlH3 and ammonia: Theoretical study. J. Phys. Chem. A 119(4), 744–751 (2015) A.S. Lisovenko, K. Morokuma, A.Y. Timoshkin, Initial gas phase reactions between Al(CH3)3/AlH3 and ammonia: Theoretical study. J. Phys. Chem. A 119(4), 744–751 (2015)
19.
Zurück zum Zitat F.C. Sauls, L.V. Interrante, Coordination compounds of aluminum as precursors to aluminum nitride. Coord. Chem. Rev. 128(1–2), 193–207 (1993) F.C. Sauls, L.V. Interrante, Coordination compounds of aluminum as precursors to aluminum nitride. Coord. Chem. Rev. 128(1–2), 193–207 (1993)
20.
Zurück zum Zitat F.C. Sauls, L.V. Interrante, Z.P. Jiang, ME3AL.NH3 formation and pyrolytic methane loss - thermodynamics, kinetics, and mechanism. Inorg. Chem. 29(16), 2989–2996 (1990) F.C. Sauls, L.V. Interrante, Z.P. Jiang, ME3AL.NH3 formation and pyrolytic methane loss - thermodynamics, kinetics, and mechanism. Inorg. Chem. 29(16), 2989–2996 (1990)
21.
Zurück zum Zitat C.H. Henricks, D. Duffy, D.P. Eyman, Lewis acidity of alanes. Interactions of trimethylalane with amines ethers and phosphines. Inorg. Chem. 7(6), 1047–1051 (1968) C.H. Henricks, D. Duffy, D.P. Eyman, Lewis acidity of alanes. Interactions of trimethylalane with amines ethers and phosphines. Inorg. Chem. 7(6), 1047–1051 (1968)
22.
Zurück zum Zitat C.C. Amato, J.B. Hudson, L.V. Interrante, Identification of the gas-phase products which occur during the deposition of AIN using the organometallic percursor: [(CH3)2AINH2]3. Appl. Surf. Sci. 54, 18–24 (1992) C.C. Amato, J.B. Hudson, L.V. Interrante, Identification of the gas-phase products which occur during the deposition of AIN using the organometallic percursor: [(CH3)2AINH2]3. Appl. Surf. Sci. 54, 18–24 (1992)
23.
Zurück zum Zitat J. Müller, Aminodimethylalane (Me2AlNH2): Matrix isolation andab InitioCalculations. J. Am. Chem. Soc. 118(27), 6370–6376 (1996) J. Müller, Aminodimethylalane (Me2AlNH2): Matrix isolation andab InitioCalculations. J. Am. Chem. Soc. 118(27), 6370–6376 (1996)
24.
Zurück zum Zitat Y.S. Hiraoka, M. Mashita, Ab initio study on the dimer structures of trimethylaluminum and dimethylaluminumhydride. J. Cryst. Growth 145(1–4), 473–477 (1994) Y.S. Hiraoka, M. Mashita, Ab initio study on the dimer structures of trimethylaluminum and dimethylaluminumhydride. J. Cryst. Growth 145(1–4), 473–477 (1994)
25.
Zurück zum Zitat K. Sekiguchi et al., Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 56(4S), 04CJ04 (2017) K. Sekiguchi et al., Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 56(4S), 04CJ04 (2017)
26.
Zurück zum Zitat D. Sengupta et al., Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth. J. Cryst. Growth 279(3–4), 369–382 (2005) D. Sengupta et al., Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth. J. Cryst. Growth 279(3–4), 369–382 (2005)
27.
Zurück zum Zitat R. Zuo et al., Quantum chemistry study on the adduct reaction paths as functions of temperature in GaN/AlN MOVPE growth. ECS J. Solid State Sci. Technol. 5(12), P667–P673 (2016) R. Zuo et al., Quantum chemistry study on the adduct reaction paths as functions of temperature in GaN/AlN MOVPE growth. ECS J. Solid State Sci. Technol. 5(12), P667–P673 (2016)
28.
Zurück zum Zitat Y. Inagaki, T. Kozawa, Chemical reaction pathways for MOVPE growth of aluminum nitride. ECS J. Solid State Sci. Technol. 5(2), P73–P75 (2016) Y. Inagaki, T. Kozawa, Chemical reaction pathways for MOVPE growth of aluminum nitride. ECS J. Solid State Sci. Technol. 5(2), P73–P75 (2016)
29.
Zurück zum Zitat A.V. Lobanova et al., Growth conditions and surface morphology of AlN MOVPE. J. Cryst. Growth 310(23), 4935–4938 (2008) A.V. Lobanova et al., Growth conditions and surface morphology of AlN MOVPE. J. Cryst. Growth 310(23), 4935–4938 (2008)
30.
Zurück zum Zitat R. Bouveyron, M.B. Charles, Growth by MOCVD of In(Ga)AIN alloys, and a study of gallium contamination in these layers under nitrogen and hydrogen carrier gas. J. Cryst. Growth 464, 105–111 (2017) R. Bouveyron, M.B. Charles, Growth by MOCVD of In(Ga)AIN alloys, and a study of gallium contamination in these layers under nitrogen and hydrogen carrier gas. J. Cryst. Growth 464, 105–111 (2017)
31.
Zurück zum Zitat J. Stellmach et al., High aluminium content and high growth rates of AlGaN in a close-coupled showerhead MOVPE reactor. J. Cryst. Growth 315(1), 229–232 (2011) J. Stellmach et al., High aluminium content and high growth rates of AlGaN in a close-coupled showerhead MOVPE reactor. J. Cryst. Growth 315(1), 229–232 (2011)
32.
Zurück zum Zitat H. Hirayama, S. Fujikawa, N. Kamata, Recent progress in AlGaN-based deep-UV LEDs. Electron. Commun. Jpn. 98(5), 1–8 (2015) H. Hirayama, S. Fujikawa, N. Kamata, Recent progress in AlGaN-based deep-UV LEDs. Electron. Commun. Jpn. 98(5), 1–8 (2015)
33.
Zurück zum Zitat J.R. Grandusky et al., 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 6(3), 032101 (2013) J.R. Grandusky et al., 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 6(3), 032101 (2013)
34.
Zurück zum Zitat J.P. Zhang et al., Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1-xN structures for deep ultraviolet emissions below 230 nm. Appl. Phys. Lett. 81(23), 4392–4394 (2002) J.P. Zhang et al., Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1-xN structures for deep ultraviolet emissions below 230 nm. Appl. Phys. Lett. 81(23), 4392–4394 (2002)
35.
Zurück zum Zitat H.M. Foronda et al., Improving source efficiency for aluminum nitride grown by metal organic chemical vapor deposition. Semicond. Sci. Technol. 31(8), 085003 (2016) H.M. Foronda et al., Improving source efficiency for aluminum nitride grown by metal organic chemical vapor deposition. Semicond. Sci. Technol. 31(8), 085003 (2016)
36.
Zurück zum Zitat R.B. Chung et al., Growth and impurity characterization of AlN on (0001) sapphire grown by spatially pulsed MOCVD. Phys. Status Solidi A Appl. Mater. Sci. 213(4), 851–855 (2016) R.B. Chung et al., Growth and impurity characterization of AlN on (0001) sapphire grown by spatially pulsed MOCVD. Phys. Status Solidi A Appl. Mater. Sci. 213(4), 851–855 (2016)
37.
Zurück zum Zitat M.J. Lai et al., Improvement of crystal quality of AlN grown on sapphire substrate by MOCVD. Cryst. Res. Technol. 45(7), 703–706 (2010) M.J. Lai et al., Improvement of crystal quality of AlN grown on sapphire substrate by MOCVD. Cryst. Res. Technol. 45(7), 703–706 (2010)
38.
Zurück zum Zitat M. Kneissl, III-Nitride Ultraviolet Emitters: Technology and Applications (Springer, Berlin, 2017) M. Kneissl, III-Nitride Ultraviolet Emitters: Technology and Applications (Springer, Berlin, 2017)
39.
Zurück zum Zitat H.-C. Seo, I. Petrov, K. Kim, Structural properties of AlN grown on sapphire at plasma self-heating conditions using reactive magnetron sputter deposition. J. Electron. Mater. 39(8), 1146–1151 (2010) H.-C. Seo, I. Petrov, K. Kim, Structural properties of AlN grown on sapphire at plasma self-heating conditions using reactive magnetron sputter deposition. J. Electron. Mater. 39(8), 1146–1151 (2010)
40.
Zurück zum Zitat Y.R. Lin, S.T. Wu, Growth of aluminum nitride films at low temperature. J. Cryst. Growth 252(1–3), 433–439 (2003) Y.R. Lin, S.T. Wu, Growth of aluminum nitride films at low temperature. J. Cryst. Growth 252(1–3), 433–439 (2003)
41.
Zurück zum Zitat S.Y. Karpov, Y.N. Makarov, Dislocation effect on light emission efficiency in gallium nitride. Appl. Phys. Lett. 81(25), 4721–4723 (2002) S.Y. Karpov, Y.N. Makarov, Dislocation effect on light emission efficiency in gallium nitride. Appl. Phys. Lett. 81(25), 4721–4723 (2002)
42.
Zurück zum Zitat A. Severino, F. Iucolano, Impact of growth conditions on stress and quality of aluminum nitride (AlN) thin buffer layers. Phys. Status Solidi B Basic Solid State Phys. 253(5), 801–808 (2016) A. Severino, F. Iucolano, Impact of growth conditions on stress and quality of aluminum nitride (AlN) thin buffer layers. Phys. Status Solidi B Basic Solid State Phys. 253(5), 801–808 (2016)
43.
Zurück zum Zitat X. Rong et al., Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy. Superlattice. Microst. 93, 27–31 (2016) X. Rong et al., Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy. Superlattice. Microst. 93, 27–31 (2016)
44.
Zurück zum Zitat P. Dong et al., AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J. Cryst. Growth 395, 9–13 (2014) P. Dong et al., AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J. Cryst. Growth 395, 9–13 (2014)
45.
Zurück zum Zitat Y. Li et al., Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 98(15), 151102 (2011) Y. Li et al., Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 98(15), 151102 (2011)
46.
Zurück zum Zitat Y. Zhang et al., Defect reduction in overgrown semi-polar (11-22) GaN on a regularly arrayed micro-rod array template. AIP Adv. 6(2), 025201 (2016) Y. Zhang et al., Defect reduction in overgrown semi-polar (11-22) GaN on a regularly arrayed micro-rod array template. AIP Adv. 6(2), 025201 (2016)
47.
Zurück zum Zitat V. Adivarahan et al., Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 46(36–40), L877–L879 (2007) V. Adivarahan et al., Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 46(36–40), L877–L879 (2007)
48.
Zurück zum Zitat M. Imura et al., Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl. Phys. Lett. 89(22), 221901 (2006) M. Imura et al., Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl. Phys. Lett. 89(22), 221901 (2006)
49.
Zurück zum Zitat M. Conroy et al., Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods. J. Mater. Chem. C 3(2), 431–437 (2015) M. Conroy et al., Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods. J. Mater. Chem. C 3(2), 431–437 (2015)
50.
Zurück zum Zitat C. Xiang et al., Improved crystalline quality of AlN by epitaxial lateral overgrowth using two-phase growth method for deep-ultraviolet stimulated emission. IEEE Photon. J. 8(5), 2300211 (2016) C. Xiang et al., Improved crystalline quality of AlN by epitaxial lateral overgrowth using two-phase growth method for deep-ultraviolet stimulated emission. IEEE Photon. J. 8(5), 2300211 (2016)
51.
Zurück zum Zitat M.I. Nathan, The blue laser diode. GaN based light emitters and lasers. Science 277(5322), 46–47 (1997) M.I. Nathan, The blue laser diode. GaN based light emitters and lasers. Science 277(5322), 46–47 (1997)
52.
Zurück zum Zitat H. Miyake et al., Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 9(2), 025501 (2016) H. Miyake et al., Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 9(2), 025501 (2016)
53.
Zurück zum Zitat M. Ohtsuka, H. Takeuchi, H. Fukuyama, Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823K on nitrided sapphire substrates by pulsed DC reactive sputtering. Jpn. J. Appl. Phys. 55(5S), 05FD08 (2016) M. Ohtsuka, H. Takeuchi, H. Fukuyama, Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823K on nitrided sapphire substrates by pulsed DC reactive sputtering. Jpn. J. Appl. Phys. 55(5S), 05FD08 (2016)
54.
Zurück zum Zitat A.M. Soomro et al., Modified pulse growth and misfit strain release of an AlN heteroepilayer with a mg–Si codoping pair by MOCVD. J. Phys. D. Appl. Phys. 49(11), 115110 (2016) A.M. Soomro et al., Modified pulse growth and misfit strain release of an AlN heteroepilayer with a mg–Si codoping pair by MOCVD. J. Phys. D. Appl. Phys. 49(11), 115110 (2016)
55.
Zurück zum Zitat D.G. Zhao et al., Effect of dual buffer layer structure on the epitaxial growth of AlN on sapphire. J. Alloys Compd. 544, 94–98 (2012) D.G. Zhao et al., Effect of dual buffer layer structure on the epitaxial growth of AlN on sapphire. J. Alloys Compd. 544, 94–98 (2012)
56.
Zurück zum Zitat S.C. Chen et al., Defect reduction in AlN epilayers grown by MOCVD via intermediate-temperature interlayers. J. Electron. Mater. 44(1), 217–221 (2015) S.C. Chen et al., Defect reduction in AlN epilayers grown by MOCVD via intermediate-temperature interlayers. J. Electron. Mater. 44(1), 217–221 (2015)
57.
Zurück zum Zitat J. Yan et al., AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE. J. Cryst. Growth 414, 254–257 (2015) J. Yan et al., AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE. J. Cryst. Growth 414, 254–257 (2015)
58.
Zurück zum Zitat P. Vennegues et al., Influence of in situ sapphire surface preparation and carrier gas on the growth mode of GaN in MOVPE. J. Cryst. Growth 187(2), 167–177 (1998) P. Vennegues et al., Influence of in situ sapphire surface preparation and carrier gas on the growth mode of GaN in MOVPE. J. Cryst. Growth 187(2), 167–177 (1998)
59.
Zurück zum Zitat O. Klein et al., TEM investigations on growth interrupted samples for the correlation of the dislocation propagation and growth mode variations in AlGaN deposited on SiNx interlayers. J. Cryst. Growth 324(1), 63–72 (2011) O. Klein et al., TEM investigations on growth interrupted samples for the correlation of the dislocation propagation and growth mode variations in AlGaN deposited on SiNx interlayers. J. Cryst. Growth 324(1), 63–72 (2011)
60.
Zurück zum Zitat K. Forghani et al., High quality AlGaN epilayers grown on sapphire using SiNx interlayers. J. Cryst. Growth 315(1), 216–219 (2011) K. Forghani et al., High quality AlGaN epilayers grown on sapphire using SiNx interlayers. J. Cryst. Growth 315(1), 216–219 (2011)
61.
Zurück zum Zitat H.-M. Wang et al., AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81(4), 604 (2002) H.-M. Wang et al., AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81(4), 604 (2002)
62.
Zurück zum Zitat J.P. Zhang et al., Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 80(19), 3542 (2002) J.P. Zhang et al., Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 80(19), 3542 (2002)
63.
Zurück zum Zitat K.P. Streubel et al., MOVPE growth for UV-LEDs. Proc. SPIE 7231, 72310G (2009) K.P. Streubel et al., MOVPE growth for UV-LEDs. Proc. SPIE 7231, 72310G (2009)
64.
Zurück zum Zitat M. Imura et al., High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn. J.Appl. Phys. Part 1 Regular Papers Brief. Commun. Rev. Papers 45(11), 8639–8643 (2006) M. Imura et al., High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn. J.Appl. Phys. Part 1 Regular Papers Brief. Commun. Rev. Papers 45(11), 8639–8643 (2006)
65.
Zurück zum Zitat M. Imura et al., Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. J. Cryst. Growth 300(1), 136–140 (2007) M. Imura et al., Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. J. Cryst. Growth 300(1), 136–140 (2007)
66.
Zurück zum Zitat T.Y. Wang et al., Defect annihilation mechanism of AlN buffer structures with alternating high and low V/III ratios grown by MOCVD. CrystEngComm 18(47), 9152–9159 (2016) T.Y. Wang et al., Defect annihilation mechanism of AlN buffer structures with alternating high and low V/III ratios grown by MOCVD. CrystEngComm 18(47), 9152–9159 (2016)
67.
Zurück zum Zitat M. Shatalov et al., AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5(8), 082101 (2012) M. Shatalov et al., AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5(8), 082101 (2012)
68.
Zurück zum Zitat R.G. Banal, M. Funato, Y. Kawakamia, Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92(24), 241905 (2008) R.G. Banal, M. Funato, Y. Kawakamia, Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92(24), 241905 (2008)
69.
Zurück zum Zitat R.G. Banal, M. Funato, Y. Kawakami, Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy. Phys. Status Solidi C Curr. Topics Solid State Phys. 7(7–8), 2111–2114 (2010) R.G. Banal, M. Funato, Y. Kawakami, Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy. Phys. Status Solidi C Curr. Topics Solid State Phys. 7(7–8), 2111–2114 (2010)
70.
Zurück zum Zitat W.G. Hu et al., Using different carrier gases to control AlN film stress and the effect on morphology, structural properties and optical properties. J. Phys. D Appl. Phys. 40(23), 7462–7466 (2007) W.G. Hu et al., Using different carrier gases to control AlN film stress and the effect on morphology, structural properties and optical properties. J. Phys. D Appl. Phys. 40(23), 7462–7466 (2007)
71.
Zurück zum Zitat M. Kneissl et al., Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26(1), 014036 (2011) M. Kneissl et al., Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26(1), 014036 (2011)
72.
Zurück zum Zitat K. Ban et al., Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Express 4(5), 052101 (2011) K. Ban et al., Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Express 4(5), 052101 (2011)
73.
Zurück zum Zitat Y. Zhao et al., Characterization of AlGaN on GaN template grown by MOCVD. Proc. SPIE 6841, 68410K (2007) Y. Zhao et al., Characterization of AlGaN on GaN template grown by MOCVD. Proc. SPIE 6841, 68410K (2007)
74.
Zurück zum Zitat S. Kamiyama et al., Low-temperature-deposited AlGaN interlayer for improvement of AlGaN_GaN heterostructure. J. Cryst. Growth 223, 83–91 (2001) S. Kamiyama et al., Low-temperature-deposited AlGaN interlayer for improvement of AlGaN_GaN heterostructure. J. Cryst. Growth 223, 83–91 (2001)
75.
Zurück zum Zitat H. Amano et al., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48(5), 353–355 (1986) H. Amano et al., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48(5), 353–355 (1986)
76.
Zurück zum Zitat M. Asif Khan et al., Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates. Appl. Phys. Lett. 61(21), 2539–2541 (1992) M. Asif Khan et al., Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates. Appl. Phys. Lett. 61(21), 2539–2541 (1992)
77.
Zurück zum Zitat M. Asif Khan et al., Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition. Appl. Phys. Lett. 60(11), 1366–1368 (1992) M. Asif Khan et al., Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition. Appl. Phys. Lett. 60(11), 1366–1368 (1992)
78.
Zurück zum Zitat M. Asif Khan et al., GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical vapor deposition. Appl. Phys. Lett. 63(25), 3470–3472 (1993) M. Asif Khan et al., GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical vapor deposition. Appl. Phys. Lett. 63(25), 3470–3472 (1993)
79.
Zurück zum Zitat O. Ambacher, Growth and applications of Group III-nitrides. J. Phys. D. Appl. Phys. 31(20), 2653–2170 (1998) O. Ambacher, Growth and applications of Group III-nitrides. J. Phys. D. Appl. Phys. 31(20), 2653–2170 (1998)
80.
Zurück zum Zitat J. Zhang et al., AlGaN deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005) J. Zhang et al., AlGaN deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 44(10), 7250–7253 (2005)
81.
Zurück zum Zitat H. Hirayama et al., Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Phys. Status Solidi C 6(S2), S474–S477 (2009) H. Hirayama et al., Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Phys. Status Solidi C 6(S2), S474–S477 (2009)
82.
Zurück zum Zitat Y. Jianchang et al., High quality AlGaN grown on a high temperature AIN template by MOCVD. J. Semicond. 30(10), 103001 (2009) Y. Jianchang et al., High quality AlGaN grown on a high temperature AIN template by MOCVD. J. Semicond. 30(10), 103001 (2009)
83.
Zurück zum Zitat P. Dong et al., 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 102(24), 241113 (2013) P. Dong et al., 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 102(24), 241113 (2013)
84.
Zurück zum Zitat V. Adivarahan et al., Sub-milliwatt power III-N light emitting diodes at 285 nm. Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L435–L436 (2002) V. Adivarahan et al., Sub-milliwatt power III-N light emitting diodes at 285 nm. Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L435–L436 (2002)
85.
Zurück zum Zitat J.P. Zhang et al., High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003) J.P. Zhang et al., High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003)
86.
Zurück zum Zitat P. Cantu et al., Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl. Phys. Lett. 82(21), 3683–3685 (2003) P. Cantu et al., Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl. Phys. Lett. 82(21), 3683–3685 (2003)
87.
Zurück zum Zitat M.L. Nakarmi et al., Transport properties of highly conductive n-type Al-rich AlxGa1−xN(x⩾0.7). Appl. Phys. Lett. 85(17), 3769–3771 (2004) M.L. Nakarmi et al., Transport properties of highly conductive n-type Al-rich AlxGa1−xN(x⩾0.7). Appl. Phys. Lett. 85(17), 3769–3771 (2004)
88.
Zurück zum Zitat K. Zhu et al., Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl. Phys. Lett. 85(20), 4669–4671 (2004) K. Zhu et al., Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl. Phys. Lett. 85(20), 4669–4671 (2004)
89.
Zurück zum Zitat Y. Taniyasu, M. Kasu, T. Makimoto, Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100cm2V−1s−1). Appl. Phys. Lett. 85(20), 4672–4674 (2004) Y. Taniyasu, M. Kasu, T. Makimoto, Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100cm2V−1s−1). Appl. Phys. Lett. 85(20), 4672–4674 (2004)
90.
Zurück zum Zitat J. Hwang et al., Si doping of high-Al-mole fraction AlxGa1−xN alloys with rf plasma-induced molecular-beam-epitaxy. Appl. Phys. Lett. 81(27), 5192–5194 (2002) J. Hwang et al., Si doping of high-Al-mole fraction AlxGa1−xN alloys with rf plasma-induced molecular-beam-epitaxy. Appl. Phys. Lett. 81(27), 5192–5194 (2002)
91.
Zurück zum Zitat R. Collazo et al., Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys. Status Solidi C 8(7–8), 2031–2033 (2011) R. Collazo et al., Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys. Status Solidi C 8(7–8), 2031–2033 (2011)
92.
Zurück zum Zitat M. Katsuragawa et al., Thermal ionization energy of Si and Mg in AlGaN. J. Cryst. Growth 189/190, 528–531 (1998) M. Katsuragawa et al., Thermal ionization energy of Si and Mg in AlGaN. J. Cryst. Growth 189/190, 528–531 (1998)
93.
Zurück zum Zitat S.R. Jeon et al., Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5). Appl. Phys. Lett. 86(8), 082107 (2005) S.R. Jeon et al., Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5). Appl. Phys. Lett. 86(8), 082107 (2005)
94.
Zurück zum Zitat M.L. Nakarmi et al., Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82(18), 3041 (2003) M.L. Nakarmi et al., Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82(18), 3041 (2003)
95.
Zurück zum Zitat J. Simon et al., Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327(5961), 60–64 (2010) J. Simon et al., Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327(5961), 60–64 (2010)
96.
Zurück zum Zitat S. Marcinkevičius et al., Intrinsic electric fields in AlGaN quantum wells. Appl. Phys. Lett. 90(8), 081914 (2007) S. Marcinkevičius et al., Intrinsic electric fields in AlGaN quantum wells. Appl. Phys. Lett. 90(8), 081914 (2007)
97.
Zurück zum Zitat A. Fujioka et al., Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Express 3(4), 041001 (2010) A. Fujioka et al., Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Express 3(4), 041001 (2010)
98.
Zurück zum Zitat S. Sumiya et al., AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates. Jpn. J. Appl. Phys. 47(1), 43–46 (2008) S. Sumiya et al., AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates. Jpn. J. Appl. Phys. 47(1), 43–46 (2008)
99.
Zurück zum Zitat H. Hirayama et al., Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier Electron blocking layer. Appl. Phys. Express 3(3), 031002 (2010) H. Hirayama et al., Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier Electron blocking layer. Appl. Phys. Express 3(3), 031002 (2010)
100.
Zurück zum Zitat J. Yan et al., Improved performance of UV-LED by p-AlGaN with graded composition. Phys. Status Solidi C 8(2), 461–463 (2011) J. Yan et al., Improved performance of UV-LED by p-AlGaN with graded composition. Phys. Status Solidi C 8(2), 461–463 (2011)
101.
Zurück zum Zitat F. Mehnke et al., Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 105(5), 051113 (2014) F. Mehnke et al., Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 105(5), 051113 (2014)
102.
Zurück zum Zitat T. Takano et al., Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10(3), 031002 (2017) T. Takano et al., Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10(3), 031002 (2017)
103.
Zurück zum Zitat L.M. Svedberg, K.C. Arndt, M.J. Cima, Corrosion of aluminum nitride (AlN) in aqueous cleaning solutions. J. Am. Ceram. Soc. 83(1), 41–46 (2000) L.M. Svedberg, K.C. Arndt, M.J. Cima, Corrosion of aluminum nitride (AlN) in aqueous cleaning solutions. J. Am. Ceram. Soc. 83(1), 41–46 (2000)
104.
Zurück zum Zitat R. Dalmau et al., X-ray photoelectron spectroscopy characterization of aluminum nitride surface oxides: Thermal and hydrothermal evolution. J. Electron. Mater. 36(4), 414–419 (2007) R. Dalmau et al., X-ray photoelectron spectroscopy characterization of aluminum nitride surface oxides: Thermal and hydrothermal evolution. J. Electron. Mater. 36(4), 414–419 (2007)
105.
Zurück zum Zitat S.A. Nikishin et al., Short-period superlattices of AlN∕Al[sub 0.08]Ga[sub 0.92]N grown on AlN substrates. Appl. Phys. Lett. 85(19), 4355 (2004) S.A. Nikishin et al., Short-period superlattices of AlN∕Al[sub 0.08]Ga[sub 0.92]N grown on AlN substrates. Appl. Phys. Lett. 85(19), 4355 (2004)
106.
Zurück zum Zitat A. Rice et al., Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. J. Appl. Phys. 108(4), 043510 (2010) A. Rice et al., Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. J. Appl. Phys. 108(4), 043510 (2010)
107.
Zurück zum Zitat R. Dalmau et al., Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J. Electrochem. Soc. 158(5), H530 (2011) R. Dalmau et al., Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J. Electrochem. Soc. 158(5), H530 (2011)
108.
Zurück zum Zitat H.J. Kim et al., Modulated precursor flow epitaxial growth of AlN layers on native AlN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 93(2), 022103 (2008) H.J. Kim et al., Modulated precursor flow epitaxial growth of AlN layers on native AlN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 93(2), 022103 (2008)
109.
Zurück zum Zitat J.R. Grandusky et al., Pseudomorphic growth of thick n-type AlxGa1-xN layers on low-defect-density bulk AlN substrates for UV LED applications. J. Cryst. Growth 311(10), 2864–2866 (2009) J.R. Grandusky et al., Pseudomorphic growth of thick n-type AlxGa1-xN layers on low-defect-density bulk AlN substrates for UV LED applications. J. Cryst. Growth 311(10), 2864–2866 (2009)
110.
Zurück zum Zitat Z. Ren et al., Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91(5), 051116 (2007) Z. Ren et al., Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91(5), 051116 (2007)
111.
Zurück zum Zitat J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974) J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974)
112.
Zurück zum Zitat J.R. Grandusky et al., Properties of mid-ultraviolet light emitting diodes fabricated from Pseudomorphic layers on bulk Aluminum nitride substrates. Appl. Phys. Express 3(7), 072103 (2010) J.R. Grandusky et al., Properties of mid-ultraviolet light emitting diodes fabricated from Pseudomorphic layers on bulk Aluminum nitride substrates. Appl. Phys. Express 3(7), 072103 (2010)
113.
Zurück zum Zitat Z. Bryan et al., High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl. Phys. Lett. 106(14), 142107 (2015) Z. Bryan et al., High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl. Phys. Lett. 106(14), 142107 (2015)
114.
Zurück zum Zitat C.G. Moe et al., High-power pseudomorphic mid-ultraviolet light-emitting diodes with improved efficiency and lifetime. Proc. SPIE 8986, 89861V (2014) C.G. Moe et al., High-power pseudomorphic mid-ultraviolet light-emitting diodes with improved efficiency and lifetime. Proc. SPIE 8986, 89861V (2014)
115.
Zurück zum Zitat Y. Kumagai et al., Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl. Phys. Express 5(5), 055504 (2012) Y. Kumagai et al., Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl. Phys. Express 5(5), 055504 (2012)
116.
Zurück zum Zitat T. Kinoshita et al., Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 5(12), 122101 (2012) T. Kinoshita et al., Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 5(12), 122101 (2012)
117.
Zurück zum Zitat S.-i. Inoue, N. Tamari, M. Taniguchi, 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 110(14), 141106 (2017) S.-i. Inoue, N. Tamari, M. Taniguchi, 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 110(14), 141106 (2017)
118.
Zurück zum Zitat S.-i. Inoue et al., Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Appl. Phys. Lett. 106(13), 131104 (2015) S.-i. Inoue et al., Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Appl. Phys. Lett. 106(13), 131104 (2015)
119.
Zurück zum Zitat J.J. Wierer et al., Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 105(6), 061106 (2014) J.J. Wierer et al., Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 105(6), 061106 (2014)
120.
Zurück zum Zitat T. Kolbe et al., Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 97, 171105 (2010) T. Kolbe et al., Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 97, 171105 (2010)
121.
Zurück zum Zitat H.Y. Ryu et al., Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Express 6(6), 062101 (2013) H.Y. Ryu et al., Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Express 6(6), 062101 (2013)
122.
Zurück zum Zitat J. Li et al., Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 83(25), 5163 (2003) J. Li et al., Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 83(25), 5163 (2003)
123.
Zurück zum Zitat K.B. Nam et al., Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 84(25), 5264 (2004) K.B. Nam et al., Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 84(25), 5264 (2004)
124.
Zurück zum Zitat T.K. Sharma, D. Naveh, E. Towe, Strain-driven light-polarization switching in deep ultraviolet nitride emitters. Phys. Rev. B 84(3), 035305 (2011) T.K. Sharma, D. Naveh, E. Towe, Strain-driven light-polarization switching in deep ultraviolet nitride emitters. Phys. Rev. B 84(3), 035305 (2011)
125.
Zurück zum Zitat J.E. Northrup et al., Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Appl. Phys. Lett. 100(2), 021101 (2012)MathSciNet J.E. Northrup et al., Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Appl. Phys. Lett. 100(2), 021101 (2012)MathSciNet
126.
Zurück zum Zitat Z. Bryan et al., Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates. Appl. Phys. Lett. 106(23), 232101 (2015) Z. Bryan et al., Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates. Appl. Phys. Lett. 106(23), 232101 (2015)
127.
Zurück zum Zitat J.J. Wierer et al., Effect of thickness and carrier density on the optical polarization of Al0.44Ga0.56N/Al0.55Ga0.45N quantum well layers. J. Appl. Phys. 115(17), 174501 (2014) J.J. Wierer et al., Effect of thickness and carrier density on the optical polarization of Al0.44Ga0.56N/Al0.55Ga0.45N quantum well layers. J. Appl. Phys. 115(17), 174501 (2014)
128.
Zurück zum Zitat T.M. Al Tahtamouni, J.Y. Lin, H.X. Jiang, Optical polarization in c-plane Al-rich AlN/AlxGa1-xN single quantum wells. Appl. Phys. Lett. 101(4), 042103 (2012) T.M. Al Tahtamouni, J.Y. Lin, H.X. Jiang, Optical polarization in c-plane Al-rich AlN/AlxGa1-xN single quantum wells. Appl. Phys. Lett. 101(4), 042103 (2012)
129.
Zurück zum Zitat R. Banal, M. Funato, Y. Kawakami, Optical anisotropy in [0001]-oriented AlxGa1−xN/AlN quantum wells (x>0.69). Phys. Rev. B 79(12), 121308(R) (2009) R. Banal, M. Funato, Y. Kawakami, Optical anisotropy in [0001]-oriented AlxGa1−xN/AlN quantum wells (x>0.69). Phys. Rev. B 79(12), 121308(R) (2009)
130.
Zurück zum Zitat M. Hou et al., Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes. Opt. Express 22(16), 19589 (2014) M. Hou et al., Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes. Opt. Express 22(16), 19589 (2014)
131.
Zurück zum Zitat S.-H. Park, J.-I. Shim, Carrier density dependence of polarization switching characteristics of light emission in deep-ultraviolet AlGaN/AlN quantum well structures. Appl. Phys. Lett. 102(22), 221109 (2013) S.-H. Park, J.-I. Shim, Carrier density dependence of polarization switching characteristics of light emission in deep-ultraviolet AlGaN/AlN quantum well structures. Appl. Phys. Lett. 102(22), 221109 (2013)
132.
Zurück zum Zitat T. Kolbe et al., Effect of temperature and strain on the optical polarization of (In)(Al)GaN ultraviolet light emitting diodes. Appl. Phys. Lett. 99(26), 261105 (2011) T. Kolbe et al., Effect of temperature and strain on the optical polarization of (In)(Al)GaN ultraviolet light emitting diodes. Appl. Phys. Lett. 99(26), 261105 (2011)
133.
Zurück zum Zitat C. Reich et al., Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl. Phys. Lett. 107(14), 142101 (2015) C. Reich et al., Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl. Phys. Lett. 107(14), 142101 (2015)
134.
Zurück zum Zitat M. Khizar et al., Nitride deep-ultraviolet light-emitting diodes with microlens array. Appl. Phys. Lett. 86(17), 173504 (2005) M. Khizar et al., Nitride deep-ultraviolet light-emitting diodes with microlens array. Appl. Phys. Lett. 86(17), 173504 (2005)
135.
Zurück zum Zitat C. Pernot et al., Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl. Phys. Express 3(6), 061004 (2010) C. Pernot et al., Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl. Phys. Express 3(6), 061004 (2010)
136.
Zurück zum Zitat C.-H. Chan et al., Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate. Appl. Phys. Lett. 95(1), 011110 (2009) C.-H. Chan et al., Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate. Appl. Phys. Lett. 95(1), 011110 (2009)
137.
Zurück zum Zitat J.H. Lee et al., Enhanced extraction efficiency of In GaN-based light-emitting diodes using 100-kHz femtosecond-laser-scribing technology. IEEE Electron Device Lett. 31(3), 213–215 (2010) J.H. Lee et al., Enhanced extraction efficiency of In GaN-based light-emitting diodes using 100-kHz femtosecond-laser-scribing technology. IEEE Electron Device Lett. 31(3), 213–215 (2010)
138.
Zurück zum Zitat Y.Y. Zhang et al., Light extraction efficiency improvement by multiple laser stealth dicing in In GaN-based blue light-emitting diodes. Opt. Express 20(6), 6808–6815 (2012) Y.Y. Zhang et al., Light extraction efficiency improvement by multiple laser stealth dicing in In GaN-based blue light-emitting diodes. Opt. Express 20(6), 6808–6815 (2012)
139.
Zurück zum Zitat K.H. Lee et al., Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to In GaN-based visible flip-chip light-emitting diodes. Opt. Express 23(16), 20340–20349 (2015) K.H. Lee et al., Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to In GaN-based visible flip-chip light-emitting diodes. Opt. Express 23(16), 20340–20349 (2015)
140.
Zurück zum Zitat Y. Guo et al., Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening. Appl. Phys. Lett. 111(1), 011102 (2017) Y. Guo et al., Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening. Appl. Phys. Lett. 111(1), 011102 (2017)
141.
Zurück zum Zitat M.R. Krames et al., High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 75(16), 2365 (1999) M.R. Krames et al., High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 75(16), 2365 (1999)
142.
Zurück zum Zitat C.E. Lee et al., Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure. IEEE Photon. Technol. Lett. 20(1–4), 184–186 (2008) C.E. Lee et al., Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure. IEEE Photon. Technol. Lett. 20(1–4), 184–186 (2008)
143.
Zurück zum Zitat X.H. Wang, P.T. Lai, H.W. Choi, Laser micromachining of optical microstructures with inclined sidewall profile. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27(3), 1048 (2009) X.H. Wang, P.T. Lai, H.W. Choi, Laser micromachining of optical microstructures with inclined sidewall profile. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27(3), 1048 (2009)
144.
Zurück zum Zitat B. Sun et al., Shape designing for light extraction enhancement bulk-GaN light-emitting diodes. J. Appl. Phys. 113(24), 243104 (2013) B. Sun et al., Shape designing for light extraction enhancement bulk-GaN light-emitting diodes. J. Appl. Phys. 113(24), 243104 (2013)
145.
Zurück zum Zitat S.-J. Chang et al., GaN-based light-emitting diodes prepared with shifted laser stealth dicing. J. Disp. Technol. 12(2), 1 (2015) S.-J. Chang et al., GaN-based light-emitting diodes prepared with shifted laser stealth dicing. J. Disp. Technol. 12(2), 1 (2015)
146.
Zurück zum Zitat Y. Guo et al., Sapphire substrate sidewall shaping of deep ultraviolet light-emitting diodes by picosecond laser multiple scribing. Appl. Phys. Express 10(6), 062101 (2017) Y. Guo et al., Sapphire substrate sidewall shaping of deep ultraviolet light-emitting diodes by picosecond laser multiple scribing. Appl. Phys. Express 10(6), 062101 (2017)
147.
Zurück zum Zitat N. Maeda, H. Hirayama, Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C 10(11), 1521–1524 (2013) N. Maeda, H. Hirayama, Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C 10(11), 1521–1524 (2013)
148.
Zurück zum Zitat M. Shatalov et al., High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 29(8), 084007 (2014) M. Shatalov et al., High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 29(8), 084007 (2014)
149.
Zurück zum Zitat J.W. Lee et al., An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission. Sci. Rep. 6, 22537 (2016) J.W. Lee et al., An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission. Sci. Rep. 6, 22537 (2016)
150.
Zurück zum Zitat J.W. Lee et al., Arrays of truncated cone AlGaN deep-ultraviolet light-emitting diodes facilitating efficient outcoupling of in-plane emission. ACS Photon. 3(11), 2030–2034 (2016) J.W. Lee et al., Arrays of truncated cone AlGaN deep-ultraviolet light-emitting diodes facilitating efficient outcoupling of in-plane emission. ACS Photon. 3(11), 2030–2034 (2016)
151.
Zurück zum Zitat Y. Guo et al., Enhancement of light extraction on AlGaN-based deep-ultraviolet light-emitting diodes using a sidewall reflection method, in Wide Bandgap Semiconductors China (SSLChina: IFWS), 2016 13th China International Forum on Solid State Lighting: International Forum on, (IEEE, New York, 2016), pp. 127–130 Y. Guo et al., Enhancement of light extraction on AlGaN-based deep-ultraviolet light-emitting diodes using a sidewall reflection method, in Wide Bandgap Semiconductors China (SSLChina: IFWS), 2016 13th China International Forum on Solid State Lighting: International Forum on, (IEEE, New York, 2016), pp. 127–130
Metadaten
Titel
Al-Rich III-Nitride Materials and Ultraviolet Light-Emitting Diodes
verfasst von
Jianchang Yan
Junxi Wang
Yuhuai Liu
Jinmin Li
Copyright-Jahr
2019
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-99211-2_7

Neuer Inhalt