Skip to main content
Erschienen in: Journal of Materials Science 9/2015

01.05.2015 | Review

AlGaN devices and growth of device structures

verfasst von: K. A. Jones, T. P. Chow, M. Wraback, M. Shatalov, Z. Sitar, F. Shahedipour, K. Udwary, G. S. Tompa

Erschienen in: Journal of Materials Science | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure of a number of GaN/AlGaN devices and their associated material growth and processing issues are examined in some detail, and extrapolations are made to predict what the advantages and challenges would accrue for similar AlGaN electrical and optical devices. For RF HEMTs, it is likely that the advantages of the larger breakdown voltage (V B) in an Al Y Ga1−Y N/Al X Ga1−X N AlGaN channel HEMT would be outweighed by the disadvantages of the lower frequency of operation created by the smaller channel mobility when compared to AlGaAs/GaAs HEMTs. The same thing can be said for lateral high-power electronic HEMTs because AlGaN/GaN HEMTs with GaN channels can now be fabricated with V B ~ 2,000 V, which is thought to be the upper voltage limit for them, even when the device structures are grown on Si substrates with its accompanying high dislocation density and bow. However, theory suggests that using Al Y Ga1−Y N/Al X Ga1−X N structures in vertical transistors and AlGaN P–N diodes could enable pulsed power applications such as electric armor because they should be able to handle an order of magnitude more power due to their ten times larger breakdown field in ~80 % Al AlGaN, and the Si donor is still relatively shallow at this Al concentration. The major challenges to achieving these goals are to be able to controllably dope the AlGaN in the mid 1015 cm−3 range, create an AlGaN current blocking layer beneath the Al Y Ga1−Y N/Al X Ga1−X N channel that contains an aperture to the drain, confine most of the mismatch dislocations in the AlGaN layers to near the interface with the GaN or AlN substrate that is parallel to the (0001) plane, and fabricate ohmic contacts to the AlGaN with a specific contact resistance <10−2 Ω cm2. Theoretically, the latter can be achieved using polarization doping. For applications to optical device structures, reducing the threading dislocation density in AlN layers on sapphire substrates by high temperature epitaxy is a key parameter for achieving AlGaN-based light emitters with a high efficiency. Stress control and prevention of relaxation is important for obtaining AlGaN layers with a similar dislocation density as the underlying AlN template. A dislocation density below 5 × 108 cm−2 is sufficient for obtaining an efficiency of radiative recombination of 40 % and higher at moderate excitation levels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mishra UK, Parikh P, Wu YF (2002) AlGaN/GaN HEMTs—an overview of device operation and applications. Proc IEEE 90:1022–1031CrossRef Mishra UK, Parikh P, Wu YF (2002) AlGaN/GaN HEMTs—an overview of device operation and applications. Proc IEEE 90:1022–1031CrossRef
2.
Zurück zum Zitat Pengelly RS, Wood SM, Milligan JW, Sheppard ST, Pribble WL (2012) A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans MTT 60:1764–1783CrossRef Pengelly RS, Wood SM, Milligan JW, Sheppard ST, Pribble WL (2012) A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans MTT 60:1764–1783CrossRef
3.
Zurück zum Zitat Ambacher O, Smart J, Shealy JR, Weimann NG, Chu K, Murphy M, Schaff WJ, Eastman LF, Dimitrov R, Wittmer L, Stutzman M, Rieger W, Hilsenbeck J (1999) Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys 85:3222–3232CrossRef Ambacher O, Smart J, Shealy JR, Weimann NG, Chu K, Murphy M, Schaff WJ, Eastman LF, Dimitrov R, Wittmer L, Stutzman M, Rieger W, Hilsenbeck J (1999) Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys 85:3222–3232CrossRef
4.
Zurück zum Zitat Jungwoo J, del Alamo JA (2008) Critical voltage for electrical degradation of GaN high-electron mobility transistors. IEEE Electron Dev Lett 29:287–289CrossRef Jungwoo J, del Alamo JA (2008) Critical voltage for electrical degradation of GaN high-electron mobility transistors. IEEE Electron Dev Lett 29:287–289CrossRef
5.
Zurück zum Zitat Higashiwaki M, Matsui T (2005) AlGaN/GaN heterostructure field-effect transistors with current gain cut-off frequency of 152 ghz on sapphire substrates. Jpn J Appl Phys 44:L475–L478CrossRef Higashiwaki M, Matsui T (2005) AlGaN/GaN heterostructure field-effect transistors with current gain cut-off frequency of 152 ghz on sapphire substrates. Jpn J Appl Phys 44:L475–L478CrossRef
6.
Zurück zum Zitat Hsu JWP, Manfra MJ, Lang DV, Richter S, Chu SNG, Sergent AM, Kleiman RN, Pfeiffer LN, Molnar RJ (2001) Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl Phys Lett 78:1685–1687CrossRef Hsu JWP, Manfra MJ, Lang DV, Richter S, Chu SNG, Sergent AM, Kleiman RN, Pfeiffer LN, Molnar RJ (2001) Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl Phys Lett 78:1685–1687CrossRef
7.
Zurück zum Zitat Kaun SW, Wong MH, Dasgupta S, Choi S, Chung R, Mishra UK, Speck JS (2011) Effects of threading dislocation density on the gate leakage of AlGaN/GaN heterostructures for HEMTs. Appl Phys Exp 4(024101):1–3 Kaun SW, Wong MH, Dasgupta S, Choi S, Chung R, Mishra UK, Speck JS (2011) Effects of threading dislocation density on the gate leakage of AlGaN/GaN heterostructures for HEMTs. Appl Phys Exp 4(024101):1–3
8.
Zurück zum Zitat Klein PB, Binari SC, Ikossi K, Wickenden AE, Koleske DD, Henry RL (2001) Current collapse and the role of carbon in AlGaN/GaN HEMTs grown by metalorganic vapor-phase epitaxy. Appl Phys Lett 79:3527–3529CrossRef Klein PB, Binari SC, Ikossi K, Wickenden AE, Koleske DD, Henry RL (2001) Current collapse and the role of carbon in AlGaN/GaN HEMTs grown by metalorganic vapor-phase epitaxy. Appl Phys Lett 79:3527–3529CrossRef
9.
Zurück zum Zitat Lyons JL, Janotti A, Van de Walle CG (2010) Carbon impurities and the yellow luminescence in GaN. Appl Phys Lett 97(152108):1–3 Lyons JL, Janotti A, Van de Walle CG (2010) Carbon impurities and the yellow luminescence in GaN. Appl Phys Lett 97(152108):1–3
10.
Zurück zum Zitat Binari SC, Ikossi K, Roussos JA, Kruppa W, Park D, Dietrich HB, Koleske DD, Wickenden AE, Henry RL (2001) Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans Electron Dev 48:465–471CrossRef Binari SC, Ikossi K, Roussos JA, Kruppa W, Park D, Dietrich HB, Koleske DD, Wickenden AE, Henry RL (2001) Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans Electron Dev 48:465–471CrossRef
11.
Zurück zum Zitat Northrup J (2001) Screw Dislocations in GaN: the Ga-filled core model. Appl Phys Lett 78:2288–2290CrossRef Northrup J (2001) Screw Dislocations in GaN: the Ga-filled core model. Appl Phys Lett 78:2288–2290CrossRef
12.
Zurück zum Zitat Law JJM, Yu ET, Koblmüller G, Wu F, Speck JS (2010) Low defect-mediated reverse-bias leakage in (0001) GaN via high-temperature molecular beam epitaxy. Appl Phys Lett 96(102111):1–3 Law JJM, Yu ET, Koblmüller G, Wu F, Speck JS (2010) Low defect-mediated reverse-bias leakage in (0001) GaN via high-temperature molecular beam epitaxy. Appl Phys Lett 96(102111):1–3
13.
Zurück zum Zitat Arslan I, Browning ND (2002) Intrinsic electronic structure of threading dislocations in GaN. Phys Rev B 65:075310CrossRef Arslan I, Browning ND (2002) Intrinsic electronic structure of threading dislocations in GaN. Phys Rev B 65:075310CrossRef
14.
Zurück zum Zitat Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H (2003) High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior. IEEE Trans Electron Dev 50:2528–2531CrossRef Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H (2003) High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior. IEEE Trans Electron Dev 50:2528–2531CrossRef
15.
Zurück zum Zitat Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I (2006) Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications. IEEE Trans Electron Dev 53:356–362CrossRef Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I (2006) Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications. IEEE Trans Electron Dev 53:356–362CrossRef
16.
Zurück zum Zitat Chowdhury S, Mishra UK (2013) Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans Electron Dev 60:3060–3066CrossRef Chowdhury S, Mishra UK (2013) Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans Electron Dev 60:3060–3066CrossRef
17.
Zurück zum Zitat Chowdhury S, Swenson BL, Mishra UK (2008) Enhancement and depletion mode AlGaN/GaN CAVET with Mg-ion-implanted GaN as current blocking layer. IEEE Electron Device Lett 29:543–545CrossRef Chowdhury S, Swenson BL, Mishra UK (2008) Enhancement and depletion mode AlGaN/GaN CAVET with Mg-ion-implanted GaN as current blocking layer. IEEE Electron Device Lett 29:543–545CrossRef
18.
Zurück zum Zitat Chowdhury S, Wong MH, Swenson BL, Mishra UK (2012) CAVET on bulk gan substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33:41–43CrossRef Chowdhury S, Wong MH, Swenson BL, Mishra UK (2012) CAVET on bulk gan substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33:41–43CrossRef
19.
Zurück zum Zitat Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y, Aoyagi Y (2008) Remarkable breakdown voltage enhancement in AlGaN channel HEMTs. Appl Phys Lett 92(263502):1–3 Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y, Aoyagi Y (2008) Remarkable breakdown voltage enhancement in AlGaN channel HEMTs. Appl Phys Lett 92(263502):1–3
20.
Zurück zum Zitat Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E, Tokuda Y (2013) AlGaN channel HEMT with extremely high breakdown voltage. IEEE Trans Electron Dev 60:1046–1053CrossRef Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E, Tokuda Y (2013) AlGaN channel HEMT with extremely high breakdown voltage. IEEE Trans Electron Dev 60:1046–1053CrossRef
21.
Zurück zum Zitat Collazo R, SMita S, Xie J, Rice A, Tweedie J, Dalmau JR, Sitar Z (2011) Progress on n-type doping of AlGaN Alloys on AlN single crystal substrates for uv optoelectronic applications. Phys Status Solidi C 8:2031–2033CrossRef Collazo R, SMita S, Xie J, Rice A, Tweedie J, Dalmau JR, Sitar Z (2011) Progress on n-type doping of AlGaN Alloys on AlN single crystal substrates for uv optoelectronic applications. Phys Status Solidi C 8:2031–2033CrossRef
22.
Zurück zum Zitat Lee ML, Mayank D, Bulsara T, Currie MT, Lochtefeld A (2005) Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J Appl Phys 97(011101):1–28 Lee ML, Mayank D, Bulsara T, Currie MT, Lochtefeld A (2005) Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J Appl Phys 97(011101):1–28
23.
Zurück zum Zitat Bean JC, Feldman LC, Flory AT, Nakahara S, Robinson IK (1982) GexSi1-x/Si Strained-layer superlattice grown by MBE. J Vac Sci Technol A 2:436–440CrossRef Bean JC, Feldman LC, Flory AT, Nakahara S, Robinson IK (1982) GexSi1-x/Si Strained-layer superlattice grown by MBE. J Vac Sci Technol A 2:436–440CrossRef
24.
Zurück zum Zitat Saitoh Y, Sumiyoshi K, Okada M, Horii T, Miyazaki T, Shiomi H, Ueno M, Kiyama KKM, Nakamura T (2010) Extremely low on-resistance and high breakdown voltage observed in vertical GaN schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates. Appl Phys Exp 3(081001):1–3 Saitoh Y, Sumiyoshi K, Okada M, Horii T, Miyazaki T, Shiomi H, Ueno M, Kiyama KKM, Nakamura T (2010) Extremely low on-resistance and high breakdown voltage observed in vertical GaN schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates. Appl Phys Exp 3(081001):1–3
25.
Zurück zum Zitat Kizilyalli IC, Edwards AP, Nie H, Disney D, Bour D (2013) High voltage vertical GaN p-n diodes with avalanche capability. IEEE Trans Electron Dev 60:3067–3070CrossRef Kizilyalli IC, Edwards AP, Nie H, Disney D, Bour D (2013) High voltage vertical GaN p-n diodes with avalanche capability. IEEE Trans Electron Dev 60:3067–3070CrossRef
26.
Zurück zum Zitat Nishikawa A, Kumakura K, Akasaka T, Makimoto T (2006) High critical electric field of AlxGa1- x N p-i-n vertical conducting diodes on n-SiC substrates. Appl Phys Lett 88(173508):1–3 Nishikawa A, Kumakura K, Akasaka T, Makimoto T (2006) High critical electric field of AlxGa1- x N p-i-n vertical conducting diodes on n-SiC substrates. Appl Phys Lett 88(173508):1–3
27.
Zurück zum Zitat Taniyasu T, Kasu M, Makimoto T (2006) An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325–328CrossRef Taniyasu T, Kasu M, Makimoto T (2006) An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325–328CrossRef
28.
Zurück zum Zitat Shatalov M, Sun W, Lunev A, Hu X, Dobrinsky A, Bilenko Y, Yang J, Shur M, Gaska R, Moe C, Garrett G, Wraback M (2012) AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express 5:082101CrossRef Shatalov M, Sun W, Lunev A, Hu X, Dobrinsky A, Bilenko Y, Yang J, Shur M, Gaska R, Moe C, Garrett G, Wraback M (2012) AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express 5:082101CrossRef
29.
Zurück zum Zitat Kojima K, Yamaguchi AA, Funato M, Kawakami Y, Noda S (2011) Impact of nonpolar AlGaN quantum wells on deep ultraviolet laser diodes. J Appl Phys 110:043115CrossRef Kojima K, Yamaguchi AA, Funato M, Kawakami Y, Noda S (2011) Impact of nonpolar AlGaN quantum wells on deep ultraviolet laser diodes. J Appl Phys 110:043115CrossRef
30.
Zurück zum Zitat Polyakov AY, Jang LW, Smirnov NB, Govorkov AV, Kozhukhova EA, Yugova G, Reznik VY, Pearton SJ, Baik KH, Hwang SM, Jung S, Lee IH (2011) Characteristics of a-GaN films and a-AlGaN/GaN heterojunctions prepared on r-sapphire by two-stage growth process. J Appl Phys 110:093709CrossRef Polyakov AY, Jang LW, Smirnov NB, Govorkov AV, Kozhukhova EA, Yugova G, Reznik VY, Pearton SJ, Baik KH, Hwang SM, Jung S, Lee IH (2011) Characteristics of a-GaN films and a-AlGaN/GaN heterojunctions prepared on r-sapphire by two-stage growth process. J Appl Phys 110:093709CrossRef
31.
Zurück zum Zitat Stellmach J, Mehnke F, Frentrup M, Reich C, Schlegel J, Pristovsek M, Wernicke T, Kneissl M (2013) Structural and optical properties of semipolar (1122) AlGaN grown on (1010) sapphire by MOCVD epitaxy. J Cryst Growth 367:42–47CrossRef Stellmach J, Mehnke F, Frentrup M, Reich C, Schlegel J, Pristovsek M, Wernicke T, Kneissl M (2013) Structural and optical properties of semipolar (1122) AlGaN grown on (1010) sapphire by MOCVD epitaxy. J Cryst Growth 367:42–47CrossRef
32.
Zurück zum Zitat Breiland WG, Coltrin ME, Creighton JR, Hou HQ, Moffat HK, Tsao JY (1999) Organometallic vapor phase epitaxy (OMVPE). Mater Sci Eng R 24:241–274CrossRef Breiland WG, Coltrin ME, Creighton JR, Hou HQ, Moffat HK, Tsao JY (1999) Organometallic vapor phase epitaxy (OMVPE). Mater Sci Eng R 24:241–274CrossRef
33.
Zurück zum Zitat Davis RF, Bishop SM, Mita S, Collazo R, Reitmeier ZJ, Sitar Z (2007) Epitaxial growth of gallium nitride. AIP Conf Proc 916:520–540CrossRef Davis RF, Bishop SM, Mita S, Collazo R, Reitmeier ZJ, Sitar Z (2007) Epitaxial growth of gallium nitride. AIP Conf Proc 916:520–540CrossRef
34.
Zurück zum Zitat Motoki K, Okahisa T, Nakahata S, Matsumoto N, Kimura H, Kasai H, Takemoto K, Uematsu UM, Kumagai Y, Koukitu A, Seki H (2002) Growth and characterization of freestanding GaN substrates. J Cryst Growth 237–239:912–921CrossRef Motoki K, Okahisa T, Nakahata S, Matsumoto N, Kimura H, Kasai H, Takemoto K, Uematsu UM, Kumagai Y, Koukitu A, Seki H (2002) Growth and characterization of freestanding GaN substrates. J Cryst Growth 237–239:912–921CrossRef
35.
Zurück zum Zitat Kempisty P, Łucznik B, Pastuszka B, Grzegory I, Boćkowski M, Krukowski S, Porowski S (2006) CFD and reaction computational analysis of the growth of GaN by HVPE method. J Cryst Growth 296:31–42CrossRef Kempisty P, Łucznik B, Pastuszka B, Grzegory I, Boćkowski M, Krukowski S, Porowski S (2006) CFD and reaction computational analysis of the growth of GaN by HVPE method. J Cryst Growth 296:31–42CrossRef
36.
Zurück zum Zitat Nepal N, Li J, Nakarmi ML, Lin JY, Jiang HX (2005) Temperature and compositional dependence of the energy band gap of AlGaN alloys. Appl Phys Lett 87(242104):1–3 Nepal N, Li J, Nakarmi ML, Lin JY, Jiang HX (2005) Temperature and compositional dependence of the energy band gap of AlGaN alloys. Appl Phys Lett 87(242104):1–3
37.
Zurück zum Zitat Baliga BJ (2008) Fundamentals of power semiconductor devices. Springer, New York, p 14CrossRef Baliga BJ (2008) Fundamentals of power semiconductor devices. Springer, New York, p 14CrossRef
38.
Zurück zum Zitat Ridley BK (1999) The low-field electron mobility in bulk AlGaN. Phys Status Solidi (a) 176:359CrossRef Ridley BK (1999) The low-field electron mobility in bulk AlGaN. Phys Status Solidi (a) 176:359CrossRef
39.
Zurück zum Zitat Lu CY, Cooper JA Jr, Tsuji T, Chung G, Williams JR Jr, McDonald K, Feldman LC (2003) Effect of process variations and ambient temperature on electron mobility at the SiO2/4H-SiC interface. IEEE Trans Electron Dev 50:1582–1588CrossRef Lu CY, Cooper JA Jr, Tsuji T, Chung G, Williams JR Jr, McDonald K, Feldman LC (2003) Effect of process variations and ambient temperature on electron mobility at the SiO2/4H-SiC interface. IEEE Trans Electron Dev 50:1582–1588CrossRef
40.
Zurück zum Zitat Dhar S, Haney S, Cheng L, Ryu SR, Agarwal AK, Yu LC, Cheung KP (2010) Inversion layer carrier concentration and mobility in 4H–SiC MOSFETs. J Appl Phys 108:054509 1–054509 5CrossRef Dhar S, Haney S, Cheng L, Ryu SR, Agarwal AK, Yu LC, Cheung KP (2010) Inversion layer carrier concentration and mobility in 4H–SiC MOSFETs. J Appl Phys 108:054509 1–054509 5CrossRef
41.
Zurück zum Zitat Cai Y, Zhou Y, Chen KJ, Lau KM (2005) High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Dev Lett 26:435–437CrossRef Cai Y, Zhou Y, Chen KJ, Lau KM (2005) High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Dev Lett 26:435–437CrossRef
42.
Zurück zum Zitat Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T, Ueda D (2007) Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Dev 54:3393–3399CrossRef Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T, Ueda D (2007) Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Dev 54:3393–3399CrossRef
43.
Zurück zum Zitat Green BM, Chu KK, Smart JA, Tilak V, Kim H, Shealy JR, Eastman LF (2000) Cascode connected AlGaN/GaN HEMT’s on SiC substrates. IEEE Microw Guided Wave Lett 10:316–318CrossRef Green BM, Chu KK, Smart JA, Tilak V, Kim H, Shealy JR, Eastman LF (2000) Cascode connected AlGaN/GaN HEMT’s on SiC substrates. IEEE Microw Guided Wave Lett 10:316–318CrossRef
44.
Zurück zum Zitat Shi J, Choi YC, Pophristic M, Spencer MG, Eastman LF (2008) High breakdown voltage AlGaN/GaN heterojunction field effect transistors on sapphire. Phys Status Solidi C 246:2013–2015CrossRef Shi J, Choi YC, Pophristic M, Spencer MG, Eastman LF (2008) High breakdown voltage AlGaN/GaN heterojunction field effect transistors on sapphire. Phys Status Solidi C 246:2013–2015CrossRef
45.
Zurück zum Zitat Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D (2009) Recent advances in GaN transistors for future emerging applications. Phys Status Solidi C 246:1221–1227CrossRef Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D (2009) Recent advances in GaN transistors for future emerging applications. Phys Status Solidi C 246:1221–1227CrossRef
46.
Zurück zum Zitat Ryu S, Hull B, Dhar S, Cheng L, Zhang Q, Richmond J, Das M, Agawal A, Palmour J, Lelis A, Geil B, Scozzie C (2010) Performance, reliability, and robustness of 4H-SiC power DMOSFETs. Mater Sci Forum 645–648:969–972CrossRef Ryu S, Hull B, Dhar S, Cheng L, Zhang Q, Richmond J, Das M, Agawal A, Palmour J, Lelis A, Geil B, Scozzie C (2010) Performance, reliability, and robustness of 4H-SiC power DMOSFETs. Mater Sci Forum 645–648:969–972CrossRef
47.
Zurück zum Zitat Dwilinski R, Doradzinski R, Garczynski J, Sierzputowski LP, Puchalski A, Kanbara Y, Yagi K, Minakuchi H, Hayashi H (2009) Bulk ammonothermal GaN. J Cryst Growth 311:3015–3018CrossRef Dwilinski R, Doradzinski R, Garczynski J, Sierzputowski LP, Puchalski A, Kanbara Y, Yagi K, Minakuchi H, Hayashi H (2009) Bulk ammonothermal GaN. J Cryst Growth 311:3015–3018CrossRef
48.
Zurück zum Zitat Paskova T, Evans KR (2009) GaN substrates—progress, status, and prospects, IEEE. J. Quantum Electron 15:1041–1052CrossRef Paskova T, Evans KR (2009) GaN substrates—progress, status, and prospects, IEEE. J. Quantum Electron 15:1041–1052CrossRef
49.
Zurück zum Zitat Skierbiszewski C, Dybko K, Knap W, Siekacz M, Krupczyński W, Nowak G, Boćkowski M, Łusakowski J, Wasilewski ZR, Maude D, Suski T, Porowski S (2005) High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown on bulk GaN by plasma assisted molecular beam epitaxy. Appl Phys Lett 86(102106):1–3 Skierbiszewski C, Dybko K, Knap W, Siekacz M, Krupczyński W, Nowak G, Boćkowski M, Łusakowski J, Wasilewski ZR, Maude D, Suski T, Porowski S (2005) High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown on bulk GaN by plasma assisted molecular beam epitaxy. Appl Phys Lett 86(102106):1–3
50.
Zurück zum Zitat Wong YY, Chiu YS, Luong TT, Lin TM, Ho YT, Lin YC, Chang EY (2012) Growth and fabrication of AlGaN/GaN HEMT on SiC substrate, ISCS2012 Proc., Kuala Lumpur, Malaysia Wong YY, Chiu YS, Luong TT, Lin TM, Ho YT, Lin YC, Chang EY (2012) Growth and fabrication of AlGaN/GaN HEMT on SiC substrate, ISCS2012 Proc., Kuala Lumpur, Malaysia
51.
Zurück zum Zitat Ducatteau D, Minko A, Hoël V, Morvan E, Delos E, Grimbert B, Lahreche H, Bove P, Gaquière C, De Jaeger JC, Delage S (2006) Output power density of 5.1/mm at 18 GHz with an AlGaN/GaN HEMT on Si substrate. IEEE Electron Device Lett 27:7–9CrossRef Ducatteau D, Minko A, Hoël V, Morvan E, Delos E, Grimbert B, Lahreche H, Bove P, Gaquière C, De Jaeger JC, Delage S (2006) Output power density of 5.1/mm at 18 GHz with an AlGaN/GaN HEMT on Si substrate. IEEE Electron Device Lett 27:7–9CrossRef
52.
Zurück zum Zitat Arulkumaran A, Miyoshi M, Egawa T, Ishikawa H, Jimbo T (2003) Electrical characteristics of AlGaN/GaN HEMTs on 4-in diameter sapphire substrate. IEEE Electron Dev Lett 24:497–499CrossRef Arulkumaran A, Miyoshi M, Egawa T, Ishikawa H, Jimbo T (2003) Electrical characteristics of AlGaN/GaN HEMTs on 4-in diameter sapphire substrate. IEEE Electron Dev Lett 24:497–499CrossRef
53.
Zurück zum Zitat Eastman LF, Tilak V, Smart J, Green BM, Chumbes EM, Dimitrov R, Kim H, Ambacher OS, Weimann N, Prunty T, Murphy M, Schaff WJ, Shealy JR (2001) Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans Electron Dev 48:479–486CrossRef Eastman LF, Tilak V, Smart J, Green BM, Chumbes EM, Dimitrov R, Kim H, Ambacher OS, Weimann N, Prunty T, Murphy M, Schaff WJ, Shealy JR (2001) Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans Electron Dev 48:479–486CrossRef
54.
Zurück zum Zitat You JH, Lu LQ, Johnson HT (2006) Electron scattering due to threading edge dislocations in n-type wurtzite GaN. J Appl Phys 99(033706):1–10 You JH, Lu LQ, Johnson HT (2006) Electron scattering due to threading edge dislocations in n-type wurtzite GaN. J Appl Phys 99(033706):1–10
55.
Zurück zum Zitat Wong YY, Chang EY, Yang TH, Chang JR, Ku JT, Hudait MK, Chou WC, Chen M, Lina KL (2010) The roles of threading dislocations on electrical properties of AlGaN/GaN heterostructure grown by MBE. J Electrochem Soc 157:H746–H749CrossRef Wong YY, Chang EY, Yang TH, Chang JR, Ku JT, Hudait MK, Chou WC, Chen M, Lina KL (2010) The roles of threading dislocations on electrical properties of AlGaN/GaN heterostructure grown by MBE. J Electrochem Soc 157:H746–H749CrossRef
56.
Zurück zum Zitat Ng HM, Doppalapudi D, Moustakas TD, Weimann NG, Eastman LF (1998) The role of dislocation scattering in n-type GaN films. Appl Phys Lett 73:821–824CrossRef Ng HM, Doppalapudi D, Moustakas TD, Weimann NG, Eastman LF (1998) The role of dislocation scattering in n-type GaN films. Appl Phys Lett 73:821–824CrossRef
57.
Zurück zum Zitat Marino FA, Faralli N, Palacios T, Ferry DK, Goodnick SM, Saraniti M (2010) Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors. IEEE Trans Electron Dev 57:353–360CrossRef Marino FA, Faralli N, Palacios T, Ferry DK, Goodnick SM, Saraniti M (2010) Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors. IEEE Trans Electron Dev 57:353–360CrossRef
58.
Zurück zum Zitat Fang ZQ, Look DC, Kim DH, Adesida I (2005) Traps in AlGaN/GaN/SiC heterostructures studied by deep level transient spectroscopy. Appl Phys Lett 87(182115):1–3 Fang ZQ, Look DC, Kim DH, Adesida I (2005) Traps in AlGaN/GaN/SiC heterostructures studied by deep level transient spectroscopy. Appl Phys Lett 87(182115):1–3
59.
Zurück zum Zitat Joh J, del Alamo JA (2011) A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans Electron Dev 58:132–140CrossRef Joh J, del Alamo JA (2011) A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans Electron Dev 58:132–140CrossRef
60.
Zurück zum Zitat Tan WS, Houston PA, Parbrook PJ, Wood DA, Hill G, Whitehouse CR (2002) Gate leakage effects and breakdown voltage in MOVPE AlGaN/GaN HFETs. Appl Phys Lett 80:3207–3209CrossRef Tan WS, Houston PA, Parbrook PJ, Wood DA, Hill G, Whitehouse CR (2002) Gate leakage effects and breakdown voltage in MOVPE AlGaN/GaN HFETs. Appl Phys Lett 80:3207–3209CrossRef
61.
Zurück zum Zitat Hashizume T, Kotan J, Hasegawa H (2004) Leakage mechanism in GaN and AlGaN schottky interfaces. Appl Phys Lett 84:4884–4886CrossRef Hashizume T, Kotan J, Hasegawa H (2004) Leakage mechanism in GaN and AlGaN schottky interfaces. Appl Phys Lett 84:4884–4886CrossRef
62.
Zurück zum Zitat Karmalkar S, Sathaiya DM, Shur MS (2003) Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors. Appl Phys Lett 82:3976–3978CrossRef Karmalkar S, Sathaiya DM, Shur MS (2003) Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors. Appl Phys Lett 82:3976–3978CrossRef
63.
Zurück zum Zitat Miller EJ, Yu ET, Waltereit P, Speck JS (2004) Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular beam epitaxy. Appl Phys Lett 84:535–537CrossRef Miller EJ, Yu ET, Waltereit P, Speck JS (2004) Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular beam epitaxy. Appl Phys Lett 84:535–537CrossRef
64.
Zurück zum Zitat Green BM, Chu KK, Chumbes EM, Smart JA, Shealy JR, Eastman LF (2000) The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT’s. IEEE Electron Dev Lett 21:268–270CrossRef Green BM, Chu KK, Chumbes EM, Smart JA, Shealy JR, Eastman LF (2000) The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT’s. IEEE Electron Dev Lett 21:268–270CrossRef
65.
Zurück zum Zitat Son NT, Bickermann M, Janzén E (2011) Shallow donor and DX states of Si in AlN. J Appl Phys 98(092104):1–3 Son NT, Bickermann M, Janzén E (2011) Shallow donor and DX states of Si in AlN. J Appl Phys 98(092104):1–3
66.
Zurück zum Zitat Mooney PM (1990) Deep donor levels (DX centers) in III-V semiconductors. J Appl Phys 67:R1–R26CrossRef Mooney PM (1990) Deep donor levels (DX centers) in III-V semiconductors. J Appl Phys 67:R1–R26CrossRef
67.
Zurück zum Zitat Raman A, Dasgutpa S, Rajan S, Speck JS, Mishra UK (2008) AlGaN channel high electron mobility transistors: device performance and power-switching figure of merit. Jpn J Appl Phys 47:3359–3361CrossRef Raman A, Dasgutpa S, Rajan S, Speck JS, Mishra UK (2008) AlGaN channel high electron mobility transistors: device performance and power-switching figure of merit. Jpn J Appl Phys 47:3359–3361CrossRef
68.
Zurück zum Zitat Kuzmik J, Pozzovivo G, Abermann S, Carlin JF, Gonschorek M, Feltin E, Grandjean N, Bertagnolli E, Strasser G, Pogany D (2008) Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2. IEEE Trans Elect Dev 55:937–941CrossRef Kuzmik J, Pozzovivo G, Abermann S, Carlin JF, Gonschorek M, Feltin E, Grandjean N, Bertagnolli E, Strasser G, Pogany D (2008) Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2. IEEE Trans Elect Dev 55:937–941CrossRef
69.
Zurück zum Zitat Hashimoto S, Akita K, Yamamoto Y, Ueno M, Nakamura T, Takeda K, Iwaya M, Honda Y, Amano H (2012) Enhancement of two-dimensional electron gases in AlGaN-channel HEMTs with AlN barrier layers. Phys Status Solidi A 209:501–504CrossRef Hashimoto S, Akita K, Yamamoto Y, Ueno M, Nakamura T, Takeda K, Iwaya M, Honda Y, Amano H (2012) Enhancement of two-dimensional electron gases in AlGaN-channel HEMTs with AlN barrier layers. Phys Status Solidi A 209:501–504CrossRef
70.
Zurück zum Zitat Kanechika M, Sugimoto M, Soeima N, Ueda H, Ishiguro O, Kodama M, Hayashi E, Itoh K, Uesugi T, Kachi T (2007) A vertical insulated gate AlGaN/GaN hetrojunction field effect transistor. Jpn J Appl Phys 46:L503–L505CrossRef Kanechika M, Sugimoto M, Soeima N, Ueda H, Ishiguro O, Kodama M, Hayashi E, Itoh K, Uesugi T, Kachi T (2007) A vertical insulated gate AlGaN/GaN hetrojunction field effect transistor. Jpn J Appl Phys 46:L503–L505CrossRef
71.
Zurück zum Zitat Otake H, Chikamatsu K, Yamaguchi A, Fujishim T, Ohta H (2008) Vertical GaN-Based Trench gate metal oxide semiconductor field effect transistors on GaN bulk substrates. Appl Phys Exp 1(011105):1–3 Otake H, Chikamatsu K, Yamaguchi A, Fujishim T, Ohta H (2008) Vertical GaN-Based Trench gate metal oxide semiconductor field effect transistors on GaN bulk substrates. Appl Phys Exp 1(011105):1–3
72.
Zurück zum Zitat Veliadis V, Steiner B, Lawson K, Bayne SB, Urciuoli D, Ha HC, El-Hinnawy N, Gupta S, Borodulin P, Howell RS, Scozzie C (2013) Reliable operation of SiC JFET subjected to over 2.4 million 1200-V/115-A hard switching events at 150°C. IEEE Electron Dev Lett 34:384–386CrossRef Veliadis V, Steiner B, Lawson K, Bayne SB, Urciuoli D, Ha HC, El-Hinnawy N, Gupta S, Borodulin P, Howell RS, Scozzie C (2013) Reliable operation of SiC JFET subjected to over 2.4 million 1200-V/115-A hard switching events at 150°C. IEEE Electron Dev Lett 34:384–386CrossRef
73.
Zurück zum Zitat Diduck Q, Nie H, Alvarez B, Edwards A, Bour D, Aktas O, Disney D, Kizilyalli IC (2013) 1000 V Vertical JFET using bulk GaN. ECS Trans 58:295–298CrossRef Diduck Q, Nie H, Alvarez B, Edwards A, Bour D, Aktas O, Disney D, Kizilyalli IC (2013) 1000 V Vertical JFET using bulk GaN. ECS Trans 58:295–298CrossRef
74.
Zurück zum Zitat Hull BA, Sumakeris JJ, OLoughlin MJ, Zhang Q, Powell AR, Imhoff EA, Hobart KD, Rivera-Lopez A, Hefner AR (2008) Performance and stability of large area 4H-SiC 10 kV JBS rectifiers. IEEE Trans Electron Dev 55:1864–1870CrossRef Hull BA, Sumakeris JJ, OLoughlin MJ, Zhang Q, Powell AR, Imhoff EA, Hobart KD, Rivera-Lopez A, Hefner AR (2008) Performance and stability of large area 4H-SiC 10 kV JBS rectifiers. IEEE Trans Electron Dev 55:1864–1870CrossRef
75.
Zurück zum Zitat Liu JQ, Skowronski M, Hallin C, Soderholm R, Lendenmann H (2002) Structure of recombination-induced stacking faults in high-voltage SiC p–n junctions. Appl Phys Lett 80:749–751CrossRef Liu JQ, Skowronski M, Hallin C, Soderholm R, Lendenmann H (2002) Structure of recombination-induced stacking faults in high-voltage SiC p–n junctions. Appl Phys Lett 80:749–751CrossRef
76.
Zurück zum Zitat Cao DS, Lu H, Chen DJ, Han P (2011) A 1100+ V AlGaN/GaN-based planar Schottky barrier diode without edge termination. Chin Phys Lett 28(017303):1–4 Cao DS, Lu H, Chen DJ, Han P (2011) A 1100+ V AlGaN/GaN-based planar Schottky barrier diode without edge termination. Chin Phys Lett 28(017303):1–4
77.
Zurück zum Zitat Lee JH, Park C, Im KS, Lee JH (2013) AlGaN/GaN-based lateral-type schottky barrier diode with very low reverse recovery charge at high temperature. IEEE Trans Electron Dev 60:3032–3039CrossRef Lee JH, Park C, Im KS, Lee JH (2013) AlGaN/GaN-based lateral-type schottky barrier diode with very low reverse recovery charge at high temperature. IEEE Trans Electron Dev 60:3032–3039CrossRef
78.
Zurück zum Zitat Ha MW, Han MK, Hahn CK (2013) Effects of post-oxidation on leakage current of high-voltage AlGaN/GaN Schottky barrier diodes on Si(111) substrates. Solid State Electron 81 Ha MW, Han MK, Hahn CK (2013) Effects of post-oxidation on leakage current of high-voltage AlGaN/GaN Schottky barrier diodes on Si(111) substrates. Solid State Electron 81
79.
Zurück zum Zitat Matthews JW, Blakeslee AE (1974) Defects in epitaxial multi-layers I. Misfit dislocations. J Cryst Growth 27:118–125 Matthews JW, Blakeslee AE (1974) Defects in epitaxial multi-layers I. Misfit dislocations. J Cryst Growth 27:118–125
80.
Zurück zum Zitat People R and Bean JC (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl Phys Lett 47:322–324CrossRef People R and Bean JC (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl Phys Lett 47:322–324CrossRef
81.
Zurück zum Zitat Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A (2007) Epitaxy of GaN on silicon—impact of symmetry and surface reconstruction. New J Phys 9(389):1–10 Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A (2007) Epitaxy of GaN on silicon—impact of symmetry and surface reconstruction. New J Phys 9(389):1–10
82.
Zurück zum Zitat Grandjean N, Massies J, Martinez Y, Vennegues P, Leroux M, Lai M (1997) GaN epitaxial growth on sapphire (0001): the role of the substrate nitridation. J Cryst Growth 178:220–228CrossRef Grandjean N, Massies J, Martinez Y, Vennegues P, Leroux M, Lai M (1997) GaN epitaxial growth on sapphire (0001): the role of the substrate nitridation. J Cryst Growth 178:220–228CrossRef
83.
Zurück zum Zitat Bernardini F, Fiorentini V, Vanderbilt D (1997) Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys Rev B 56:R10024–R10027CrossRef Bernardini F, Fiorentini V, Vanderbilt D (1997) Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys Rev B 56:R10024–R10027CrossRef
84.
Zurück zum Zitat Jindal V, Shahedipour-Sandvik F (2009) Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN. J Appl Phys 105(084902):1–7 Jindal V, Shahedipour-Sandvik F (2009) Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN. J Appl Phys 105(084902):1–7
85.
Zurück zum Zitat Jindal V, Shahedipour-Sandvik F (2010) Computational and experimental studies on the growth of nonpolar surfaces of gallium nitride. J Appl Phys 107(054907):1–6 Jindal V, Shahedipour-Sandvik F (2010) Computational and experimental studies on the growth of nonpolar surfaces of gallium nitride. J Appl Phys 107(054907):1–6
86.
Zurück zum Zitat te Nijenhuis J, van der Wel PJ, van Eck ERH, Giling LJ (1996) Misfit dislocation formation in lattice-mismatched III–V heterostructures grown by MOCVD. J Phys D 29:2961–2970CrossRef te Nijenhuis J, van der Wel PJ, van Eck ERH, Giling LJ (1996) Misfit dislocation formation in lattice-mismatched III–V heterostructures grown by MOCVD. J Phys D 29:2961–2970CrossRef
87.
Zurück zum Zitat Fitzgerald EA, Xia YH, Monroe D, Silverman PJ, Kuo JM, Kortran AR, Thiel FA, Weir BE (1992) Relaxed GexSi1-x structures for III-V integration with Si and high mobility 2DEGs in Si. J Vac Sci Technol B 10:1807–1819CrossRef Fitzgerald EA, Xia YH, Monroe D, Silverman PJ, Kuo JM, Kortran AR, Thiel FA, Weir BE (1992) Relaxed GexSi1-x structures for III-V integration with Si and high mobility 2DEGs in Si. J Vac Sci Technol B 10:1807–1819CrossRef
88.
Zurück zum Zitat Jones KA, Batyrev IG (2012) The structure of dislocations in (In, Al, Ga)N wurtzite films grown epitaxially on (0001) or (1122) GaN or AlN substrates. J Appl Phys 112(113507):1–10 Jones KA, Batyrev IG (2012) The structure of dislocations in (In, Al, Ga)N wurtzite films grown epitaxially on (0001) or (1122) GaN or AlN substrates. J Appl Phys 112(113507):1–10
89.
Zurück zum Zitat Floro JA, Follstaedt DM, Provercio P, Hearne SJ, Lee SR (2004) Misfit dislocation formation in the AlGaN/GaN heterointerface. J Appl Phys 96:7087–7094CrossRef Floro JA, Follstaedt DM, Provercio P, Hearne SJ, Lee SR (2004) Misfit dislocation formation in the AlGaN/GaN heterointerface. J Appl Phys 96:7087–7094CrossRef
90.
Zurück zum Zitat Mathis SK, Romanov AE, Chen LF, Beltz GE, Pompe W, Speck JS (2000) modeling of threading dislocation reduction in growing GaN layers. Phys Status Solidi 179:125–145CrossRef Mathis SK, Romanov AE, Chen LF, Beltz GE, Pompe W, Speck JS (2000) modeling of threading dislocation reduction in growing GaN layers. Phys Status Solidi 179:125–145CrossRef
91.
Zurück zum Zitat Cantu P, Wu F, Waltereit P, Keller S, Romanov AE, Mishra K, DenBaars SP, Speck JS (2003) Si doping effect on strain reduction in compressively strained Al0.49Ga0.51N thin films. Appl Phys Lett 83:674–676CrossRef Cantu P, Wu F, Waltereit P, Keller S, Romanov AE, Mishra K, DenBaars SP, Speck JS (2003) Si doping effect on strain reduction in compressively strained Al0.49Ga0.51N thin films. Appl Phys Lett 83:674–676CrossRef
92.
Zurück zum Zitat Follstaedt DM, Lee SR, Allerman AA, Floro JA (2009) Strain relaxation in AlGaN multilayer structures by inclined dislocations. J Appl Phys 105(083507):1–13 Follstaedt DM, Lee SR, Allerman AA, Floro JA (2009) Strain relaxation in AlGaN multilayer structures by inclined dislocations. J Appl Phys 105(083507):1–13
93.
Zurück zum Zitat Moram MA, Ghedia CS, Rao DVS, Barnard JS, Zhang Y, Kappers MJ, Humphreys CJ (2009) On the origin of threading dislocations in GaN films. J Appl Phys 106(073513):1–9 Moram MA, Ghedia CS, Rao DVS, Barnard JS, Zhang Y, Kappers MJ, Humphreys CJ (2009) On the origin of threading dislocations in GaN films. J Appl Phys 106(073513):1–9
94.
Zurück zum Zitat Wu XH, Fini P, Tarsa EJ, Heying B, Keller S, Mishra UK, SDenBaars SP, Speck JS (1998) Dislocation generation In GaN heteroepitaxy. J Cryst Growth 189–190:231–243CrossRef Wu XH, Fini P, Tarsa EJ, Heying B, Keller S, Mishra UK, SDenBaars SP, Speck JS (1998) Dislocation generation In GaN heteroepitaxy. J Cryst Growth 189–190:231–243CrossRef
95.
Zurück zum Zitat Ichimura M, Sasaki A (1986) Short-range order in III-V ternary alloy semiconductors. J Appl Phys 60:3850–3855CrossRef Ichimura M, Sasaki A (1986) Short-range order in III-V ternary alloy semiconductors. J Appl Phys 60:3850–3855CrossRef
96.
Zurück zum Zitat Gotz W, Johnson NM, Chen C, Liu H, Kuo C, Imler W (1996) Activation energies of Si donors in GaN. Appl Phys Lett 68:3144–3146CrossRef Gotz W, Johnson NM, Chen C, Liu H, Kuo C, Imler W (1996) Activation energies of Si donors in GaN. Appl Phys Lett 68:3144–3146CrossRef
97.
Zurück zum Zitat Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95:3851–3879CrossRef Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95:3851–3879CrossRef
98.
Zurück zum Zitat Zhu K, Nakarmi ML, Kim KH, Lin JY, Jiang HX (2004) Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl Phys Lett 85:4669–4671CrossRef Zhu K, Nakarmi ML, Kim KH, Lin JY, Jiang HX (2004) Silicon doping dependence of highly conductive n-type Al0.7Ga0.3N. Appl Phys Lett 85:4669–4671CrossRef
99.
Zurück zum Zitat McCluskey MD, Johnson NM, Van de Walle CG, Bour DP, Kneissl M, Walukiewicz W (1998) Metastability of oxygen donors in AlGaN. Phys Rev Lett 80:4008–4011CrossRef McCluskey MD, Johnson NM, Van de Walle CG, Bour DP, Kneissl M, Walukiewicz W (1998) Metastability of oxygen donors in AlGaN. Phys Rev Lett 80:4008–4011CrossRef
100.
Zurück zum Zitat Nepal N, Nakarmi ML, Lin JY, Jiang HX (2006) photoluminescence studies of impurity transitions in AlGaN alloys. Appl Phys Lett 89(092107):1–3 Nepal N, Nakarmi ML, Lin JY, Jiang HX (2006) photoluminescence studies of impurity transitions in AlGaN alloys. Appl Phys Lett 89(092107):1–3
101.
Zurück zum Zitat Gotz G, Johnson NM, Walker J, Bour DP, Street RA (1996) Activation of acceptors in Mg-doped GaN grown by MOCVD. Appl Phys Lett 68:667–669CrossRef Gotz G, Johnson NM, Walker J, Bour DP, Street RA (1996) Activation of acceptors in Mg-doped GaN grown by MOCVD. Appl Phys Lett 68:667–669CrossRef
102.
Zurück zum Zitat Nakarmi ML, Nepal N, Lin JY, Jiang HX (2009) Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl Phys Lett 94(091903):1–3 Nakarmi ML, Nepal N, Lin JY, Jiang HX (2009) Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl Phys Lett 94(091903):1–3
103.
Zurück zum Zitat Nakarmi ML, Nepal N, Ugolini C, Altahtamouni TM, Lin JY, Jiang HX (2006) Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl Phys Lett 89(152120):1–3 Nakarmi ML, Nepal N, Ugolini C, Altahtamouni TM, Lin JY, Jiang HX (2006) Correlation between optical and electrical properties of Mg-doped AlN epilayers. Appl Phys Lett 89(152120):1–3
104.
Zurück zum Zitat Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer BK (1997) Excited states of Fe3+ in GaN. Phys Rev B 55:4382–4387CrossRef Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer BK (1997) Excited states of Fe3+ in GaN. Phys Rev B 55:4382–4387CrossRef
105.
Zurück zum Zitat Heikman S, Keller S, Mates T, DenBaars SP, Mishra UK (2003) Growth and characteristics of Fe-doped GaN. J Cryst Growth 248:513–517CrossRef Heikman S, Keller S, Mates T, DenBaars SP, Mishra UK (2003) Growth and characteristics of Fe-doped GaN. J Cryst Growth 248:513–517CrossRef
106.
Zurück zum Zitat Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S (2007) C-Doped GaN buffer layers with high breakdown voltages for highpower operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J Cryst Growth 298:831–834CrossRef Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S (2007) C-Doped GaN buffer layers with high breakdown voltages for highpower operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J Cryst Growth 298:831–834CrossRef
107.
Zurück zum Zitat Desmarais V, Rudziñski M, Rorsman N, Hageman PR, Larsen PK, Zirath H, Rödle TC, Jos HFF (2006) Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers. IEEE Trans Electron Dev 53:2413–2417CrossRef Desmarais V, Rudziñski M, Rorsman N, Hageman PR, Larsen PK, Zirath H, Rödle TC, Jos HFF (2006) Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers. IEEE Trans Electron Dev 53:2413–2417CrossRef
108.
Zurück zum Zitat Tompkins RP, Walsh TA, Derenge MA, Kirchner KW, Zhou S, Nguyen CB, Jones KA, Suvarna P, Tungare M, Tripathi N, Shahedipour-Sandvik F (2011) The effect of carbon impurities on lightly doped MOCVD GaN Schottky diodes. J Mater Res 26:2895–2900CrossRef Tompkins RP, Walsh TA, Derenge MA, Kirchner KW, Zhou S, Nguyen CB, Jones KA, Suvarna P, Tungare M, Tripathi N, Shahedipour-Sandvik F (2011) The effect of carbon impurities on lightly doped MOCVD GaN Schottky diodes. J Mater Res 26:2895–2900CrossRef
109.
Zurück zum Zitat Burk AA, O’Loughlin MJ, Sumakeris JJ, Halin C, Berkman E, Balakrishna V, Young J, Garrett L, Irvine KG, Powell AR, Khlebnikov Y, Leonard RT, Basceri C, Hull BA, Agarwal AK (2009) SiC epitaxial growth on multiple 100-mm wafers and its applications to power-switching devices. Mater Sci Forum 600–603:77–81CrossRef Burk AA, O’Loughlin MJ, Sumakeris JJ, Halin C, Berkman E, Balakrishna V, Young J, Garrett L, Irvine KG, Powell AR, Khlebnikov Y, Leonard RT, Basceri C, Hull BA, Agarwal AK (2009) SiC epitaxial growth on multiple 100-mm wafers and its applications to power-switching devices. Mater Sci Forum 600–603:77–81CrossRef
110.
Zurück zum Zitat Collazo R, Xie J, Gaddy BE, Bryan Z, Kirste R, Hoffmann M, Dalmau R, Moody B, Yi K, Nagashima T, Kubota Y, Kinoshita T, Koukitu A, Irving DL, Sitar Z (2012) On the origin of the 265 nm absorption band n AlN bulk crystals. Appl Phys Lett 100(191914):1–3 Collazo R, Xie J, Gaddy BE, Bryan Z, Kirste R, Hoffmann M, Dalmau R, Moody B, Yi K, Nagashima T, Kubota Y, Kinoshita T, Koukitu A, Irving DL, Sitar Z (2012) On the origin of the 265 nm absorption band n AlN bulk crystals. Appl Phys Lett 100(191914):1–3
111.
Zurück zum Zitat Herro ZG, Zhuang D, Schlesser R, Sitar Z (2010) Growth of AlN single crystalline boules. J Cryst Growth 312:2519–2521CrossRef Herro ZG, Zhuang D, Schlesser R, Sitar Z (2010) Growth of AlN single crystalline boules. J Cryst Growth 312:2519–2521CrossRef
112.
Zurück zum Zitat Kumagai Y, Kubota Y, Nagashima T, Kinoshita T, Dalmau R, Schlesser R, Moody B, Xie J, Murakami H, Koukitu A, Sitar Z (2012) Preparation of a freestanding AlN substrate from a thick AlN layer grown by HVPE on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express 5(055504):1–3 Kumagai Y, Kubota Y, Nagashima T, Kinoshita T, Dalmau R, Schlesser R, Moody B, Xie J, Murakami H, Koukitu A, Sitar Z (2012) Preparation of a freestanding AlN substrate from a thick AlN layer grown by HVPE on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express 5(055504):1–3
113.
Zurück zum Zitat Slack GA, Schowalter LJ, Morelli D, Freitas JA Jr (2002) Some effects of oxygen impurities on AlN and GaN. J Cryst Growth 246:287–298CrossRef Slack GA, Schowalter LJ, Morelli D, Freitas JA Jr (2002) Some effects of oxygen impurities on AlN and GaN. J Cryst Growth 246:287–298CrossRef
114.
Zurück zum Zitat Wright AF (2002) Substitutional and interstitial C in wurtzite GaN. J Appl Phys 92:2575–2585CrossRef Wright AF (2002) Substitutional and interstitial C in wurtzite GaN. J Appl Phys 92:2575–2585CrossRef
115.
Zurück zum Zitat Seager CH, Wright AF, Yu J, Goetz W (2002) Role of C in GaN. J Appl Phys 92:6553–6560CrossRef Seager CH, Wright AF, Yu J, Goetz W (2002) Role of C in GaN. J Appl Phys 92:6553–6560CrossRef
116.
Zurück zum Zitat Hasegawa H, Oyama S (2002) Mechanism of anomalous current transport in n-type GaN Schottky contacts. J Vac Sci Technol B 20:1647–1655CrossRef Hasegawa H, Oyama S (2002) Mechanism of anomalous current transport in n-type GaN Schottky contacts. J Vac Sci Technol B 20:1647–1655CrossRef
117.
Zurück zum Zitat Kucheyeva SO, Williams JS, Pearton SJ (2001) Ion implantation into GaN. Mater Sci Eng 33:51–107CrossRef Kucheyeva SO, Williams JS, Pearton SJ (2001) Ion implantation into GaN. Mater Sci Eng 33:51–107CrossRef
118.
Zurück zum Zitat Karpinski J, Jun J, Porowski S (1984) Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J Cryst Growth 66:1–10CrossRef Karpinski J, Jun J, Porowski S (1984) Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J Cryst Growth 66:1–10CrossRef
119.
Zurück zum Zitat Aluri GS, Gowda M, Mahadik NA, Sundaresan SG, Rao MV, Schreifels JA, Freitas JA Jr, Qadri SB, Tian YL (2010) Microwave annealing of Mg-implanted and in situ Be-doped GaN. J Appl Phys 108(083103):1–7 Aluri GS, Gowda M, Mahadik NA, Sundaresan SG, Rao MV, Schreifels JA, Freitas JA Jr, Qadri SB, Tian YL (2010) Microwave annealing of Mg-implanted and in situ Be-doped GaN. J Appl Phys 108(083103):1–7
120.
Zurück zum Zitat Ghana JS, Cheung NW, Schloss L, Jones E, Wong WS, Newman N, Liu X, Weber ER, Gassman A, Rubin MD (1996) Thermal annealing characteristics of Si and Mg-implanted GaN thin films. Appl Phys Lett 68:2702–2704CrossRef Ghana JS, Cheung NW, Schloss L, Jones E, Wong WS, Newman N, Liu X, Weber ER, Gassman A, Rubin MD (1996) Thermal annealing characteristics of Si and Mg-implanted GaN thin films. Appl Phys Lett 68:2702–2704CrossRef
121.
Zurück zum Zitat Batyrev IG, Sarney WL, Zheleva T, Nguyen C, Rice BM, Jones KA (2011) Dislocations and stacking faults in hexagonal GaN. Phys Status Solidi A 208:1566–1568CrossRef Batyrev IG, Sarney WL, Zheleva T, Nguyen C, Rice BM, Jones KA (2011) Dislocations and stacking faults in hexagonal GaN. Phys Status Solidi A 208:1566–1568CrossRef
122.
Zurück zum Zitat Hager CE IV, Jones KA, Derenge MA, Zheleva TS (2009) Activation of ion implanted Si in GaN using a dual AlN annealing cap. J Appl Phys 105(033713):1–7 Hager CE IV, Jones KA, Derenge MA, Zheleva TS (2009) Activation of ion implanted Si in GaN using a dual AlN annealing cap. J Appl Phys 105(033713):1–7
123.
Zurück zum Zitat Pearton SJ, Zolper JC, Shul RJ, Ren F (1999) GaN: processing, defects, and devices. J Appl Phys 86:1–79CrossRef Pearton SJ, Zolper JC, Shul RJ, Ren F (1999) GaN: processing, defects, and devices. J Appl Phys 86:1–79CrossRef
124.
Zurück zum Zitat Polyakov AY, Shin M, Skowronski M, Wilson RG, Greve DW, Pearton SJ (1997) Ion implantation of Si, Mg and C into Al0.12Ga0.88N. Solid State Electron 41:703–706CrossRef Polyakov AY, Shin M, Skowronski M, Wilson RG, Greve DW, Pearton SJ (1997) Ion implantation of Si, Mg and C into Al0.12Ga0.88N. Solid State Electron 41:703–706CrossRef
125.
Zurück zum Zitat Yu H, McCarthy L, Rajan S, Keller S, Denbaars S, Speck J, Mishra U (2005) Ion implanted AlGaN–GaN HEMTs with nonalloyed ohmic contacts. IEEE Electron Dev Lett 26:283–285CrossRef Yu H, McCarthy L, Rajan S, Keller S, Denbaars S, Speck J, Mishra U (2005) Ion implanted AlGaN–GaN HEMTs with nonalloyed ohmic contacts. IEEE Electron Dev Lett 26:283–285CrossRef
126.
Zurück zum Zitat Nguyen C, Shah P, Leong E, Derenge M, Jones K (2010) Si implant-assisted ohmic contacts to GaN. Solid State Electron 54:1227–1231CrossRef Nguyen C, Shah P, Leong E, Derenge M, Jones K (2010) Si implant-assisted ohmic contacts to GaN. Solid State Electron 54:1227–1231CrossRef
127.
Zurück zum Zitat Cho HK, Hossain T, Bae JW, Adesida I (2005) “Characterization of Pd/Ni/Au ohmic contacts on p-GaN. Solid-State Electron 49:774–778CrossRef Cho HK, Hossain T, Bae JW, Adesida I (2005) “Characterization of Pd/Ni/Au ohmic contacts on p-GaN. Solid-State Electron 49:774–778CrossRef
128.
Zurück zum Zitat Kim HK, Seong TY, Adesida I, Tang CW, Lau KM (2004) Low-resistance Pt/Pd/Au ohmic contacts to p-type AlGaN. Appl Phys Lett 84(1710):1712 1–3 Kim HK, Seong TY, Adesida I, Tang CW, Lau KM (2004) Low-resistance Pt/Pd/Au ohmic contacts to p-type AlGaN. Appl Phys Lett 84(1710):1712 1–3
129.
Zurück zum Zitat Piprek J (2012) Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping. Opt Quant Electron 44:67–73CrossRef Piprek J (2012) Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping. Opt Quant Electron 44:67–73CrossRef
130.
Zurück zum Zitat Simon J, Protasenko V, Lian C, Xing H, Jena D (2010) Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327:60–64CrossRef Simon J, Protasenko V, Lian C, Xing H, Jena D (2010) Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327:60–64CrossRef
131.
Zurück zum Zitat Ueda T, Murata T, Nakazawa S, Ishida H, Uemoto Y, Inoue K, Tanaka T, Ueda D (2010) Polarization engineering in GaN power transistors. Phys Status Solidi (b) 247:1735–1739CrossRef Ueda T, Murata T, Nakazawa S, Ishida H, Uemoto Y, Inoue K, Tanaka T, Ueda D (2010) Polarization engineering in GaN power transistors. Phys Status Solidi (b) 247:1735–1739CrossRef
132.
Zurück zum Zitat Chow TP, Li Z (2012) Recent advances in high-voltage GaN MOS-gated transistors for power electronics applications, Chapter 8. In: Pearton S (ed) GaN and ZnO-based materials and devices. Springer, Berlin, pp 239–250CrossRef Chow TP, Li Z (2012) Recent advances in high-voltage GaN MOS-gated transistors for power electronics applications, Chapter 8. In: Pearton S (ed) GaN and ZnO-based materials and devices. Springer, Berlin, pp 239–250CrossRef
133.
Zurück zum Zitat Li Z, Chow TP (2011) Drift region optimization in high voltage GaN MOS-gated HEMTs. Phys Status Solidi (c) 8:2436–2438CrossRef Li Z, Chow TP (2011) Drift region optimization in high voltage GaN MOS-gated HEMTs. Phys Status Solidi (c) 8:2436–2438CrossRef
134.
Zurück zum Zitat Uemoto Y, Shibata D, Yanahihara M, Ishida H, Matsuo H, Nagai S, Batta N, Li M, Ueda T, Tanaka T, Ueda D (2007) 8300 V Blocking voltage AlGaN/GaN power HFET with thick poly-AIN passivation. In: IEEE IEDM, Technical Digest, pp. 861–864 Uemoto Y, Shibata D, Yanahihara M, Ishida H, Matsuo H, Nagai S, Batta N, Li M, Ueda T, Tanaka T, Ueda D (2007) 8300 V Blocking voltage AlGaN/GaN power HFET with thick poly-AIN passivation. In: IEEE IEDM, Technical Digest, pp. 861–864
135.
Zurück zum Zitat Derluyn J, Van Hove M, Visalli D, Lorenz A, Marcon D, Srivastava P, Geens K, Sijmus B, Viaene J, Kang X, Das J, Medjdoub F, Cheng K, Degroote S, Leys M, Borghs G, Germain M (2009) Low leakage high breakdown E-mode GaN DHFET on Si by selective removal of in situ grown Si3N4. In: IEEE IEDM, Technical Digest, pp. 157–160 Derluyn J, Van Hove M, Visalli D, Lorenz A, Marcon D, Srivastava P, Geens K, Sijmus B, Viaene J, Kang X, Das J, Medjdoub F, Cheng K, Degroote S, Leys M, Borghs G, Germain M (2009) Low leakage high breakdown E-mode GaN DHFET on Si by selective removal of in situ grown Si3N4. In: IEEE IEDM, Technical Digest, pp. 157–160
136.
Zurück zum Zitat Tang Z, Huang S, Jiang Q, Liu S, Liu C, Chen KJ (2013) High-voltage (600 V) low-leakage low-current-collapse AlGaN/GaN HEMTs with AlN/SiNx passivation. IEEE Electron Device Lett 34:366–368CrossRef Tang Z, Huang S, Jiang Q, Liu S, Liu C, Chen KJ (2013) High-voltage (600 V) low-leakage low-current-collapse AlGaN/GaN HEMTs with AlN/SiNx passivation. IEEE Electron Device Lett 34:366–368CrossRef
137.
Zurück zum Zitat Wong KY, Chen W, Liu X, Zhou C, Chen KJ (2012) GaN smart power IC technology. Phys Status Solidi (b) 247:1732–1734CrossRef Wong KY, Chen W, Liu X, Zhou C, Chen KJ (2012) GaN smart power IC technology. Phys Status Solidi (b) 247:1732–1734CrossRef
138.
Zurück zum Zitat Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF, Chow TP (2013) Monolithic integration of LEDs and power MOS channel HEMTs for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 102(192107):1–3 Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF, Chow TP (2013) Monolithic integration of LEDs and power MOS channel HEMTs for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 102(192107):1–3
139.
Zurück zum Zitat Grandusky JR, Chen J, Gibb SR, Mendrick MC, Moe CG, Rodak L, Garrett GA, Wraback M, Schowalter LJ (2013) 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl Phys Express 6:032101CrossRef Grandusky JR, Chen J, Gibb SR, Mendrick MC, Moe CG, Rodak L, Garrett GA, Wraback M, Schowalter LJ (2013) 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl Phys Express 6:032101CrossRef
140.
Zurück zum Zitat Shatalov M, Sun W, Jain R, Lunev A, Hu X, Alex Dobrinsky A, Bilenko Y, Yang J, Garrett GA, Rodak LE, Wraback M, Shur M, Gaska R (2014) High power AlGaN ultraviolet light emitters. Semicond Sci Tech 29:084007CrossRef Shatalov M, Sun W, Jain R, Lunev A, Hu X, Alex Dobrinsky A, Bilenko Y, Yang J, Garrett GA, Rodak LE, Wraback M, Shur M, Gaska R (2014) High power AlGaN ultraviolet light emitters. Semicond Sci Tech 29:084007CrossRef
141.
Zurück zum Zitat Wunderer T, Chua CL, Yang ZH, Northrup JE, Johnson NM, Garrett GA, Shen HG, Wraback M (2011) Pseudomorphically grown ultraviolet c photopumped lasers on bulk AlN substrates. Appl Phys Express 4(092101):1–3 Wunderer T, Chua CL, Yang ZH, Northrup JE, Johnson NM, Garrett GA, Shen HG, Wraback M (2011) Pseudomorphically grown ultraviolet c photopumped lasers on bulk AlN substrates. Appl Phys Express 4(092101):1–3
142.
Zurück zum Zitat Takano T, Narita Y, Horiuchi A, Kawanishi H (2004) Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Appl Phys Lett 84:3567–3569CrossRef Takano T, Narita Y, Horiuchi A, Kawanishi H (2004) Room-temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple-quantum-well laser. Appl Phys Lett 84:3567–3569CrossRef
143.
Zurück zum Zitat Sampath AV, Enck RW, Zhou Q, McIntosh DC, Shen HP, Campbell JC, Wraback M (2012) P-type interface charge control layers for enabling GaN/SiC separate absorption and multiplication avalanche photodiodes. Appl Phys Lett 101(093506):1–3 Sampath AV, Enck RW, Zhou Q, McIntosh DC, Shen HP, Campbell JC, Wraback M (2012) P-type interface charge control layers for enabling GaN/SiC separate absorption and multiplication avalanche photodiodes. Appl Phys Lett 101(093506):1–3
144.
Zurück zum Zitat Zhou Q, McIntosh DC, Lu Z, Campbell JC, Sampath AV, Shen HP, Wraback M (2011) GaN/SiC avalanche photodiodes. Appl Phys Lett 99(131110):1–3 Zhou Q, McIntosh DC, Lu Z, Campbell JC, Sampath AV, Shen HP, Wraback M (2011) GaN/SiC avalanche photodiodes. Appl Phys Lett 99(131110):1–3
145.
Zurück zum Zitat Rodak LE, Sampath AV, Gallinat CS, Chen Y, Zhou Q, Campbell JC, Shen H, Wraback M (2013) Solar-blind AlxGa1-xN/AlN/SiC photodiodes with a polarization-induced electron filter. Appl Phys Lett 103:071110CrossRef Rodak LE, Sampath AV, Gallinat CS, Chen Y, Zhou Q, Campbell JC, Shen H, Wraback M (2013) Solar-blind AlxGa1-xN/AlN/SiC photodiodes with a polarization-induced electron filter. Appl Phys Lett 103:071110CrossRef
146.
Zurück zum Zitat Grandusky JR, Smart JA, Mendrick MC, Schowalter LJ, Chen KX, Schubert EF (2009) Pseudomorphic growth of thick n-type AlxGa1-xN layers on low-defect- density bulk AlN substrates for UVLED applications. J Cryst Growth 311:2864–2866CrossRef Grandusky JR, Smart JA, Mendrick MC, Schowalter LJ, Chen KX, Schubert EF (2009) Pseudomorphic growth of thick n-type AlxGa1-xN layers on low-defect- density bulk AlN substrates for UVLED applications. J Cryst Growth 311:2864–2866CrossRef
147.
Zurück zum Zitat Ren Z, Sun Q, Kwon SY, Han J, Davitt K, Song YK, Nurmikko AV, Cho HK, Liu W, Smart JA, Schowalter LJ (2007) Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl Phys Lett 91(051116):1–3 Ren Z, Sun Q, Kwon SY, Han J, Davitt K, Song YK, Nurmikko AV, Cho HK, Liu W, Smart JA, Schowalter LJ (2007) Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl Phys Lett 91(051116):1–3
148.
Zurück zum Zitat Wu Y, Hanlon A, Kaeding JF, Sharma R, Fini PT, Nakamura S, Speck JS (2004) Effect of nitridation on polarity, microstructure, and morphology of AlN films. Appl Phys Lett 84:912–914CrossRef Wu Y, Hanlon A, Kaeding JF, Sharma R, Fini PT, Nakamura S, Speck JS (2004) Effect of nitridation on polarity, microstructure, and morphology of AlN films. Appl Phys Lett 84:912–914CrossRef
149.
Zurück zum Zitat Khan MA, Kuznia JN, Skogman RA, Olson DT, MacMillan M, Choyke WJ (1992) Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates. Appl Phys Lett 61:2539–2541CrossRef Khan MA, Kuznia JN, Skogman RA, Olson DT, MacMillan M, Choyke WJ (1992) Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates. Appl Phys Lett 61:2539–2541CrossRef
150.
Zurück zum Zitat Gaska R, Zhang J, Shur M (2009) U.S. Patent 7,491,626 Gaska R, Zhang J, Shur M (2009) U.S. Patent 7,491,626
151.
Zurück zum Zitat Hirayama H, Yatabe T, Noguchi N, Ohashi T, Kamata N (2007) 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett 91(071901):1–3 Hirayama H, Yatabe T, Noguchi N, Ohashi T, Kamata N (2007) 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett 91(071901):1–3
152.
Zurück zum Zitat Imura M, Nakano K, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A (2007) Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys 46:1458–1462CrossRef Imura M, Nakano K, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A (2007) Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys 46:1458–1462CrossRef
153.
Zurück zum Zitat Bai J, Dudley M, Sun WH, Wang HM, Khan MA (2006) Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification. Appl Phys Lett 88(051903):1–3 Bai J, Dudley M, Sun WH, Wang HM, Khan MA (2006) Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification. Appl Phys Lett 88(051903):1–3
154.
Zurück zum Zitat Imuraa M, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasak I, Noro T, Takag T, Bando A (2007) Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III. J Cryst Growth 300:136–140CrossRef Imuraa M, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasak I, Noro T, Takag T, Bando A (2007) Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III. J Cryst Growth 300:136–140CrossRef
155.
Zurück zum Zitat Chen Z, Fareed RSQ, Gaevski M, Adivarahan V, Yang JW, Khan A (2006) Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl Phys Lett 89(081905):1–3 Chen Z, Fareed RSQ, Gaevski M, Adivarahan V, Yang JW, Khan A (2006) Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl Phys Lett 89(081905):1–3
156.
Zurück zum Zitat Imura M, Nakano K, Kitano T, Fujimoto N, Narita G, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Shimono K, Noro T, Takagi T, Bandoh A (2008) Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl Phys Lett 89(221901):1–3 Imura M, Nakano K, Kitano T, Fujimoto N, Narita G, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Shimono K, Noro T, Takagi T, Bandoh A (2008) Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl Phys Lett 89(221901):1–3
157.
Zurück zum Zitat Jain R, Sun W, Yang J, Shatalov M, Hu X, Sattu A, Lunev A, Deng J, Shturm I, Bilenko Y, Gaska R, Shur MS (2008) Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett 93(051113):1–3 Jain R, Sun W, Yang J, Shatalov M, Hu X, Sattu A, Lunev A, Deng J, Shturm I, Bilenko Y, Gaska R, Shur MS (2008) Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett 93(051113):1–3
158.
Zurück zum Zitat Shatalov M, Gaevski M, Adivarahan V, Khan A (2006) Room-temperature stimulated emission from AlN at 214 nm. Jpn J Appl Phys 45:L1286–L1288CrossRef Shatalov M, Gaevski M, Adivarahan V, Khan A (2006) Room-temperature stimulated emission from AlN at 214 nm. Jpn J Appl Phys 45:L1286–L1288CrossRef
159.
Zurück zum Zitat Liliental-Weber Z: private communication Liliental-Weber Z: private communication
160.
Zurück zum Zitat Follstaedt DM, Lee SR, Provencio PP, Allerman AA, Floro JA, Crawford MH (2005) Relaxation of compressively-strained AlGaN by inclined threading dislocations. Appl Phys Lett 87(121112):1–3 Follstaedt DM, Lee SR, Provencio PP, Allerman AA, Floro JA, Crawford MH (2005) Relaxation of compressively-strained AlGaN by inclined threading dislocations. Appl Phys Lett 87(121112):1–3
161.
Zurück zum Zitat Garrett GA, Sampath AV, Shen H, Wraback M, Sun W, Shatalov M, Hu X, Yang J, Bilenko Y, Lunev A, Shur MS, Gaska R, Grandusky JR, Schowalter LJ (2010) Strain relaxation in AlGaN multilayer structures by inclined dislocations. Phys Status Solidi (c) 7:2390–2393CrossRef Garrett GA, Sampath AV, Shen H, Wraback M, Sun W, Shatalov M, Hu X, Yang J, Bilenko Y, Lunev A, Shur MS, Gaska R, Grandusky JR, Schowalter LJ (2010) Strain relaxation in AlGaN multilayer structures by inclined dislocations. Phys Status Solidi (c) 7:2390–2393CrossRef
162.
163.
Zurück zum Zitat Mickevičius J, Tamulaitis G, Shur M, Shatalov M, Yang J, Gaska R (2012) Internal quantum efficiency in AlGaN with strong carrier localization. Appl Phys Lett 101(211902):1–3 Mickevičius J, Tamulaitis G, Shur M, Shatalov M, Yang J, Gaska R (2012) Internal quantum efficiency in AlGaN with strong carrier localization. Appl Phys Lett 101(211902):1–3
164.
Zurück zum Zitat Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki U, Amano H (2011) Internal quantum efficiency of whole-composition-range AlGaN multi-quantum wells. Appl Phys Express 4(052101):1–3 Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki U, Amano H (2011) Internal quantum efficiency of whole-composition-range AlGaN multi-quantum wells. Appl Phys Express 4(052101):1–3
165.
Zurück zum Zitat Shatalov M, Gaska R, Yang J, Shur M, US Patent 8,426,225 Shatalov M, Gaska R, Yang J, Shur M, US Patent 8,426,225
166.
Zurück zum Zitat Shatalov M, Yang J, Bilenko Y, Shur M, Gaska R (2011) CLEO Technical Digest, JTuD1 Shatalov M, Yang J, Bilenko Y, Shur M, Gaska R (2011) CLEO Technical Digest, JTuD1
167.
Zurück zum Zitat Dadgar A, Veit P, Schulze F, Bläsing J, Krtschil A, Witte H, Diez A, Hempel T, Christen J, Clos R, Krost A (2007) MOVPE growth of GaN on Si—substrates and strain. Thin Solid Films 515:4356–4361CrossRef Dadgar A, Veit P, Schulze F, Bläsing J, Krtschil A, Witte H, Diez A, Hempel T, Christen J, Clos R, Krost A (2007) MOVPE growth of GaN on Si—substrates and strain. Thin Solid Films 515:4356–4361CrossRef
168.
Zurück zum Zitat Ehrentraut D, Sitar Z (2009) Advances in bulk crystal growth of AlN and GaN. MRS Bull 34:259–265CrossRef Ehrentraut D, Sitar Z (2009) Advances in bulk crystal growth of AlN and GaN. MRS Bull 34:259–265CrossRef
169.
Zurück zum Zitat Kobayashi Y, Kumakura K, Akasaka T, Makimoto T (2012) Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484:223–227CrossRef Kobayashi Y, Kumakura K, Akasaka T, Makimoto T (2012) Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484:223–227CrossRef
170.
Zurück zum Zitat Dalmau R, Moody B, Schlesser R, Mita S, Xie J, Feneberg M, Neuschl B, Thonke K, Collazo R, Rice A, Tweedie J, Sitar Z (2011) Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J Electrochem Soc 158:H530CrossRef Dalmau R, Moody B, Schlesser R, Mita S, Xie J, Feneberg M, Neuschl B, Thonke K, Collazo R, Rice A, Tweedie J, Sitar Z (2011) Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J Electrochem Soc 158:H530CrossRef
171.
Zurück zum Zitat Grandusky JR, Gibb SR, Mendrick MC, Moe C, Wraback M, Schowalter LJ (2011) High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance. Appl Phys Express 4(082101):1–3 Grandusky JR, Gibb SR, Mendrick MC, Moe C, Wraback M, Schowalter LJ (2011) High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance. Appl Phys Express 4(082101):1–3
172.
Zurück zum Zitat Kneissel M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson NM, Weyers M (2011) Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol 26(014036):1–6 Kneissel M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson NM, Weyers M (2011) Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol 26(014036):1–6
173.
Zurück zum Zitat Sun CJ, Kung P, Saxler A, Ohsato H, Bigan E, Razeghi M, Gaskill DK (1994) Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates. J Appl Phys 76:236–241CrossRef Sun CJ, Kung P, Saxler A, Ohsato H, Bigan E, Razeghi M, Gaskill DK (1994) Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates. J Appl Phys 76:236–241CrossRef
174.
Zurück zum Zitat Mita S, Collazo R, Sitar Z (2009) Fabrication of a GaN lateral polarity junction by metalorganic chemical vapor deposition. J Cryst Growth 311:3044–3048CrossRef Mita S, Collazo R, Sitar Z (2009) Fabrication of a GaN lateral polarity junction by metalorganic chemical vapor deposition. J Cryst Growth 311:3044–3048CrossRef
175.
Zurück zum Zitat Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Tr R Soc S A 243:299–358CrossRef Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Tr R Soc S A 243:299–358CrossRef
176.
Zurück zum Zitat Mita S, Collazo R, Rice A, Dalmau RF, Sitar Z (2008) Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition. J Appl Phys 104(013521):1–9 Mita S, Collazo R, Rice A, Dalmau RF, Sitar Z (2008) Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition. J Appl Phys 104(013521):1–9
177.
Zurück zum Zitat Paskova T, Evans K (2009) GaN Substrates-progress, status, and prospects. IEEE J Sel Top Quantum 15:1041–1052CrossRef Paskova T, Evans K (2009) GaN Substrates-progress, status, and prospects. IEEE J Sel Top Quantum 15:1041–1052CrossRef
178.
Zurück zum Zitat Lu P, Collazo R, Dalmau RF, Durkaya G, Dietz N, Raghothamacha RB, Dudley M, Sitar Z (2009) Seeded growth of AlN bulk crystals in m- and c-orientation. J Cryst Growth 312:58–63CrossRef Lu P, Collazo R, Dalmau RF, Durkaya G, Dietz N, Raghothamacha RB, Dudley M, Sitar Z (2009) Seeded growth of AlN bulk crystals in m- and c-orientation. J Cryst Growth 312:58–63CrossRef
179.
Zurück zum Zitat Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82:87–93CrossRef Herring C (1951) Some theorems on the free energies of crystal surfaces. Phys Rev 82:87–93CrossRef
180.
Zurück zum Zitat Rice A, Collazo R, Tweedie J, Dalmau R, Mita S, Xie J, Sitar Z (2010) Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. J Appl Phys 108(043510):1–9 Rice A, Collazo R, Tweedie J, Dalmau R, Mita S, Xie J, Sitar Z (2010) Surface preparation and homoepitaxial deposition of AlN on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. J Appl Phys 108(043510):1–9
181.
Zurück zum Zitat Stringfellow GB (1998) Organometallic vapor-phase epitaxy: theory and practice. Academic Press, Boston Stringfellow GB (1998) Organometallic vapor-phase epitaxy: theory and practice. Academic Press, Boston
182.
Zurück zum Zitat Hildebrand JH (1929) Solubility. XII. Regular solutions. J Am Chem Soc 51:66–80CrossRef Hildebrand JH (1929) Solubility. XII. Regular solutions. J Am Chem Soc 51:66–80CrossRef
183.
Zurück zum Zitat Ho IH, Stringfellow GB (1996) Solid phase immiscibility in GaInN. Appl Phys Lett 69:2701–2703CrossRef Ho IH, Stringfellow GB (1996) Solid phase immiscibility in GaInN. Appl Phys Lett 69:2701–2703CrossRef
184.
Zurück zum Zitat Xi YA, Chen KX, Mont FW, Kim JK, Lee W, Schubert EF, Liu W, Li X, Smart JA (2007) Kinetic study of Al-mole fraction in Al x Ga1−x N grown on c-plane sapphire and AlN bulk substrates by MOVPE epitaxy. Appl Phys Lett 90(051104):1–3 Xi YA, Chen KX, Mont FW, Kim JK, Lee W, Schubert EF, Liu W, Li X, Smart JA (2007) Kinetic study of Al-mole fraction in Al x Ga1−x N grown on c-plane sapphire and AlN bulk substrates by MOVPE epitaxy. Appl Phys Lett 90(051104):1–3
185.
Zurück zum Zitat Rice A, Collazo R, Tweedie J, Xie J, Mita S, Sitar Z (2010) Linear dependency of Al-mole fraction with group-III precursor flows in AlxGa1-x N deposition by LP OMVPE. J Cryst Growth 312:1321–1324CrossRef Rice A, Collazo R, Tweedie J, Xie J, Mita S, Sitar Z (2010) Linear dependency of Al-mole fraction with group-III precursor flows in AlxGa1-x N deposition by LP OMVPE. J Cryst Growth 312:1321–1324CrossRef
186.
Zurück zum Zitat Stampfl C, Van de Walle CG (2002) Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Phys Rev B 65(155212):1–10 Stampfl C, Van de Walle CG (2002) Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Phys Rev B 65(155212):1–10
187.
Zurück zum Zitat Van de Walle CG (1998) DX-center formation in wurtzite and zinc-blende AlxGa1-xN. Phys Rev B 57:R2033–R2036CrossRef Van de Walle CG (1998) DX-center formation in wurtzite and zinc-blende AlxGa1-xN. Phys Rev B 57:R2033–R2036CrossRef
188.
Zurück zum Zitat Zeisel R, Bayerl MW, Goennenwein STB, Dimitrov R, Ambacher O, Brandt MS, Stutzmann M (2000) DX-behavior of Si in AlN. Phys Rev B 61:R16283–R16286CrossRef Zeisel R, Bayerl MW, Goennenwein STB, Dimitrov R, Ambacher O, Brandt MS, Stutzmann M (2000) DX-behavior of Si in AlN. Phys Rev B 61:R16283–R16286CrossRef
189.
Zurück zum Zitat Nakarmi ML, Nepal N, Lin JY, Jiang HX (2005) Unintentionally doped n-type Al0.67Ga0.33N epilayers. Appl Phys Lett 86(261902):1–3 Nakarmi ML, Nepal N, Lin JY, Jiang HX (2005) Unintentionally doped n-type Al0.67Ga0.33N epilayers. Appl Phys Lett 86(261902):1–3
190.
Zurück zum Zitat Neugebauer J, Van de Walle CG (1994) Atomic geometry and electronic-structure of native defects in GaN. Phys Rev B 50:8067–8070CrossRef Neugebauer J, Van de Walle CG (1994) Atomic geometry and electronic-structure of native defects in GaN. Phys Rev B 50:8067–8070CrossRef
191.
Zurück zum Zitat Slotte J, Tuomisto F, Saarinen K, Moe CG, Keller S, DenBaars SP (2007) Influence of silicon doping on vacancies and optical properties of AlxGa1-xN thin films. Appl Phys Lett 90(151908):1–3 Slotte J, Tuomisto F, Saarinen K, Moe CG, Keller S, DenBaars SP (2007) Influence of silicon doping on vacancies and optical properties of AlxGa1-xN thin films. Appl Phys Lett 90(151908):1–3
192.
Zurück zum Zitat Tanaka T, Watanabe A, Amano H, Kobayashi Y, Akasaki I, Yamazaki S, Koike M (1994) P-type conduction in Mg-doped GaN and Al0.08 GaN0.92 grown by metalorganic vapor-phase epitaxy. Appl Phys Lett 65:593–594CrossRef Tanaka T, Watanabe A, Amano H, Kobayashi Y, Akasaki I, Yamazaki S, Koike M (1994) P-type conduction in Mg-doped GaN and Al0.08 GaN0.92 grown by metalorganic vapor-phase epitaxy. Appl Phys Lett 65:593–594CrossRef
193.
Zurück zum Zitat Van de Walle CG, Stampfl C, Neugebauer J, McCluskey MD, Johnson NM (1999) Doping of AlGaN alloys. MRS Internet JNSR 4(G10):14 Van de Walle CG, Stampfl C, Neugebauer J, McCluskey MD, Johnson NM (1999) Doping of AlGaN alloys. MRS Internet JNSR 4(G10):14
194.
Zurück zum Zitat Einfeldt S, Kirchner V, Heinke H, Dießelberg M, Figge S, Vogeler K, Hommel D (2000) Strain relaxation in AlGaN under tensile plane stress. J Appl Phys 88:7029–7036CrossRef Einfeldt S, Kirchner V, Heinke H, Dießelberg M, Figge S, Vogeler K, Hommel D (2000) Strain relaxation in AlGaN under tensile plane stress. J Appl Phys 88:7029–7036CrossRef
195.
Zurück zum Zitat Han J, Figiel JJ, Crawford MH, Banas MA, Bartram ME, Biefeld RM, Song YK, Nurmikko AV (1998) OMVPE growth and gas-phase reactions of AlGaN for UV emitters. J Cryst Growth 195:291–296CrossRef Han J, Figiel JJ, Crawford MH, Banas MA, Bartram ME, Biefeld RM, Song YK, Nurmikko AV (1998) OMVPE growth and gas-phase reactions of AlGaN for UV emitters. J Cryst Growth 195:291–296CrossRef
196.
Zurück zum Zitat Zhang JP, Khan MA, Sun WH, Wang HM, Chen CQ, Fareed Q, Kuokstis E, Yang JW (2002) Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1−xN structures for deep ultraviolet emissions below 230 nm. Appl Phys Lett 81:4392–4394CrossRef Zhang JP, Khan MA, Sun WH, Wang HM, Chen CQ, Fareed Q, Kuokstis E, Yang JW (2002) Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1−xN structures for deep ultraviolet emissions below 230 nm. Appl Phys Lett 81:4392–4394CrossRef
197.
Zurück zum Zitat Adivarahan V, Simin G, Tamulaitis G, Srinivasan R, Yang J, Khan MA, Shur MS, Gaska R (2001) Indium–silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett 79:1903–1905CrossRef Adivarahan V, Simin G, Tamulaitis G, Srinivasan R, Yang J, Khan MA, Shur MS, Gaska R (2001) Indium–silicon co-doping of high-aluminum-content AlGaN for solar blind photodetectors. Appl Phys Lett 79:1903–1905CrossRef
198.
Zurück zum Zitat Chen CH, Liu H, Steigerwald D, Imler W, Kuo CP, Craford MG, Ludowise M, Lester S, Amano J (1996) A study of parasitic reactions between NH3 and TMGa or TMAl. J Electron Mater 25:1004–1008CrossRef Chen CH, Liu H, Steigerwald D, Imler W, Kuo CP, Craford MG, Ludowise M, Lester S, Amano J (1996) A study of parasitic reactions between NH3 and TMGa or TMAl. J Electron Mater 25:1004–1008CrossRef
199.
Zurück zum Zitat Jenny JR, Van Nostrand JE, Kaspi R (1998) The effect of Al on Ga desorption during gas source-molecular beam epitaxial growth of AlGaN. Appl Phys Lett 72:85–87CrossRef Jenny JR, Van Nostrand JE, Kaspi R (1998) The effect of Al on Ga desorption during gas source-molecular beam epitaxial growth of AlGaN. Appl Phys Lett 72:85–87CrossRef
200.
Zurück zum Zitat Grandusky JR, Jamil M, Jindal V, Tripathi N, Shahedipour-Sandvik F (2007) Identification of important growth parameters for the development of high quality Al(x>0.5)Ga(1−x)N grown by metal organic chemical vapor deposition. J Vac Sci Technol A 25:441–447CrossRef Grandusky JR, Jamil M, Jindal V, Tripathi N, Shahedipour-Sandvik F (2007) Identification of important growth parameters for the development of high quality Al(x>0.5)Ga(1−x)N grown by metal organic chemical vapor deposition. J Vac Sci Technol A 25:441–447CrossRef
201.
Zurück zum Zitat Kim KH, Fan ZY, Khizar M, Nakarmi ML, Lin JY, Jiang HX (2004) AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers. Appl Phys Lett 85:4777–4779CrossRef Kim KH, Fan ZY, Khizar M, Nakarmi ML, Lin JY, Jiang HX (2004) AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers. Appl Phys Lett 85:4777–4779CrossRef
202.
Zurück zum Zitat Cicek E, McClintock R, Vashaei Z, Zhang Y, Gautier S, Cho CY, Razeghi M (2013) Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl Phys Lett 102(051102):1–3 Cicek E, McClintock R, Vashaei Z, Zhang Y, Gautier S, Cho CY, Razeghi M (2013) Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy. Appl Phys Lett 102(051102):1–3
203.
Zurück zum Zitat Collazo R, Mita S, Xie J, Rice A, Tweedie J, Dalmau R, Sitar Z (2011) Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys Status Solidi (C) 8:2031–2033CrossRef Collazo R, Mita S, Xie J, Rice A, Tweedie J, Dalmau R, Sitar Z (2011) Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys Status Solidi (C) 8:2031–2033CrossRef
204.
Zurück zum Zitat Srikant V, Speck JS, Clarke DR (1997) Mosaic structure in epitaxial thin films having large lattice mismatch. J Appl Phys 82:4286–4295CrossRef Srikant V, Speck JS, Clarke DR (1997) Mosaic structure in epitaxial thin films having large lattice mismatch. J Appl Phys 82:4286–4295CrossRef
205.
Zurück zum Zitat Sakai A, Sugimoto K, Yamamoto T, Okada M, Ikeda H, Yasuda Y (2001) Reduction of threading dislocation density in SiGe layers on Si (001) using a two-step strain–relaxation procedure. Appl Phys Lett 79:3398–3400CrossRef Sakai A, Sugimoto K, Yamamoto T, Okada M, Ikeda H, Yasuda Y (2001) Reduction of threading dislocation density in SiGe layers on Si (001) using a two-step strain–relaxation procedure. Appl Phys Lett 79:3398–3400CrossRef
206.
Zurück zum Zitat Linder KK, Zhang FC, Rieh JS, Bhattacharya P, Houghton D (1997) Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer. Appl Phys Lett 70:3224–3226CrossRef Linder KK, Zhang FC, Rieh JS, Bhattacharya P, Houghton D (1997) Reduction of dislocation density in mismatched SiGe/Si using a low-temperature Si buffer layer. Appl Phys Lett 70:3224–3226CrossRef
207.
Zurück zum Zitat Bai J, Wang T, Parbrook PJ, Wang Q, Lee KB, Cullis AG (2007) Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer. Appl Phys Lett 91(131903):1–3 Bai J, Wang T, Parbrook PJ, Wang Q, Lee KB, Cullis AG (2007) Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer. Appl Phys Lett 91(131903):1–3
208.
Zurück zum Zitat Wang T, Lee KB, Bai J, Parbrook PJ, Airey RJ, Wang Q, Hill G, Ranalli F, Cullis AG (2006) Greatly improved performance of light emitting diodes using a very thin GaN interlayer on a high temperature AlN buffer layer. Appl Phys Lett 89(081126):1–3 Wang T, Lee KB, Bai J, Parbrook PJ, Airey RJ, Wang Q, Hill G, Ranalli F, Cullis AG (2006) Greatly improved performance of light emitting diodes using a very thin GaN interlayer on a high temperature AlN buffer layer. Appl Phys Lett 89(081126):1–3
209.
Zurück zum Zitat Ploog KH, Brandt O, Muralidharan R, Thamm A, Waltereit P (2000) Growth of high quality (Al, Ga)N and (Ga, In) N on SiC (0001) by plasma assisted and reactive molecular beam epitaxy”. J Vac Sci Technol B 18:2290–2294CrossRef Ploog KH, Brandt O, Muralidharan R, Thamm A, Waltereit P (2000) Growth of high quality (Al, Ga)N and (Ga, In) N on SiC (0001) by plasma assisted and reactive molecular beam epitaxy”. J Vac Sci Technol B 18:2290–2294CrossRef
210.
Zurück zum Zitat Waltereit P, Lim SH, McLaurin M, Speck JS (2002) Heteroepitaxial Growth of GaN on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy. Phys Status Solidi (a) 194:524–527CrossRef Waltereit P, Lim SH, McLaurin M, Speck JS (2002) Heteroepitaxial Growth of GaN on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy. Phys Status Solidi (a) 194:524–527CrossRef
211.
Zurück zum Zitat Nasser NM, Ye ZZ, Li J, Xu YB (2001) GaN heteroepitaxial growth techniques. J Microw Optoelectron 2:22–31 Nasser NM, Ye ZZ, Li J, Xu YB (2001) GaN heteroepitaxial growth techniques. J Microw Optoelectron 2:22–31
212.
Zurück zum Zitat Chen J, Zhang SM, Zhang BS, Zhu JJ, Shen XM, Feng G, Liu JP, Wang YT, Yang H, Zheng WC (2003) Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD. J Cryst Growth 256:248–253CrossRef Chen J, Zhang SM, Zhang BS, Zhu JJ, Shen XM, Feng G, Liu JP, Wang YT, Yang H, Zheng WC (2003) Influences of reactor pressure of GaN buffer layers on morphological evolution of GaN grown by MOCVD. J Cryst Growth 256:248–253CrossRef
213.
Zurück zum Zitat Detchprohm T, Amano H, Hiramatsu K, Akasaki I (1992) Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer. Appl Phys Lett 61:2670–2688CrossRef Detchprohm T, Amano H, Hiramatsu K, Akasaki I (1992) Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer. Appl Phys Lett 61:2670–2688CrossRef
214.
Zurück zum Zitat Ren F, Abernathy CR, MacKenzie JD, Gila BP, Pearton SJ, Hong M, Schurman MJ, Baca AG, Shul RJ (1998) Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics. Solid-State Electron 42:2177–2181CrossRef Ren F, Abernathy CR, MacKenzie JD, Gila BP, Pearton SJ, Hong M, Schurman MJ, Baca AG, Shul RJ (1998) Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics. Solid-State Electron 42:2177–2181CrossRef
215.
Zurück zum Zitat Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Kozaki T, Umemoto H, Sano M, Chocho K (1997) InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices. Jpn J Appl Phys Part 2 36:L1568–L1571CrossRef Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Kozaki T, Umemoto H, Sano M, Chocho K (1997) InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices. Jpn J Appl Phys Part 2 36:L1568–L1571CrossRef
216.
Zurück zum Zitat Yarm KF, Chang WC, Hsieh IT (2012) Advanced Materials Research, Vol. 459, pp. 63–66 Yarm KF, Chang WC, Hsieh IT (2012) Advanced Materials Research, Vol. 459, pp. 63–66
217.
Zurück zum Zitat Nakamura S, Senoh M, Nagahama S, Iwasa N, Matsushita T, Mukai T (2000) Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl Phys Lett 76:22–24CrossRef Nakamura S, Senoh M, Nagahama S, Iwasa N, Matsushita T, Mukai T (2000) Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl Phys Lett 76:22–24CrossRef
218.
Zurück zum Zitat Nagahama SI, Yanamoto Y, Sano M, Mukai T (2002) Ultraviolet GaN single quantum well laser diodes. Jpn J Appl Phys Part 2 40:L785–L787CrossRef Nagahama SI, Yanamoto Y, Sano M, Mukai T (2002) Ultraviolet GaN single quantum well laser diodes. Jpn J Appl Phys Part 2 40:L785–L787CrossRef
219.
Zurück zum Zitat Wagner V, Parillaud O, Bühlmann HJ, Illegems M, Gradecak S, Stadelmann P, Riemann T, Christen J (2002) Influence of the carrier gas composition on morphology, dislocations, and microscopic luminescence properties of selectively grown GaN by hydride vapor phase epitaxy. J Appl Phys 92:1307–1316CrossRef Wagner V, Parillaud O, Bühlmann HJ, Illegems M, Gradecak S, Stadelmann P, Riemann T, Christen J (2002) Influence of the carrier gas composition on morphology, dislocations, and microscopic luminescence properties of selectively grown GaN by hydride vapor phase epitaxy. J Appl Phys 92:1307–1316CrossRef
220.
Zurück zum Zitat Aujol E, Trassoudaine A, Siozade L, Pimpinelli A, Cadoret R (2001) Hydrogen and nitrogen ambient effects on epitaxial growth of GaN by hydride vapour phase epitaxy. J Crystal Growth 230:372–376CrossRef Aujol E, Trassoudaine A, Siozade L, Pimpinelli A, Cadoret R (2001) Hydrogen and nitrogen ambient effects on epitaxial growth of GaN by hydride vapour phase epitaxy. J Crystal Growth 230:372–376CrossRef
221.
Zurück zum Zitat Liu HP, Tsay JD, Liu WY, Guo YD, Hsu JT, Chen IG (2004) The growth mechanism of GaN grown by hydride vapor phase epitaxy in N2 and H2 carrier gas. J Crystal Growth 260:79–84CrossRef Liu HP, Tsay JD, Liu WY, Guo YD, Hsu JT, Chen IG (2004) The growth mechanism of GaN grown by hydride vapor phase epitaxy in N2 and H2 carrier gas. J Crystal Growth 260:79–84CrossRef
222.
Zurück zum Zitat Segal AS, Kondratyev AV, Karpov SY, Martin D, Wagner V, Ilegems M (2004) Surface chemistry and transport effects in GaN hydride vapor phase epitaxy. J Cryst Growth 270:384–395CrossRef Segal AS, Kondratyev AV, Karpov SY, Martin D, Wagner V, Ilegems M (2004) Surface chemistry and transport effects in GaN hydride vapor phase epitaxy. J Cryst Growth 270:384–395CrossRef
223.
Zurück zum Zitat Imade M, Yamada N, Kitano Y, Kawamura F, Yoshimura M, Kitaoka Y, Mori Y, Sasaki T (2008) Increase in the growth rate of GaN single crystals grown by gallium hydride vapor phase epitaxy method. Phys Status Solidi C 5:1719–1722CrossRef Imade M, Yamada N, Kitano Y, Kawamura F, Yoshimura M, Kitaoka Y, Mori Y, Sasaki T (2008) Increase in the growth rate of GaN single crystals grown by gallium hydride vapor phase epitaxy method. Phys Status Solidi C 5:1719–1722CrossRef
224.
Zurück zum Zitat Richter E, Henning C, Weyers M, Habel F, Tsay JD, Liu WY, Bruckner P, Scholz F, Makarov Y, Segal A, Kacppeler J (2005) Surface chemistry and transport effects in GaN hydride vapor phase epitaxy. J Cryst Growth 277:6–12CrossRef Richter E, Henning C, Weyers M, Habel F, Tsay JD, Liu WY, Bruckner P, Scholz F, Makarov Y, Segal A, Kacppeler J (2005) Surface chemistry and transport effects in GaN hydride vapor phase epitaxy. J Cryst Growth 277:6–12CrossRef
Metadaten
Titel
AlGaN devices and growth of device structures
verfasst von
K. A. Jones
T. P. Chow
M. Wraback
M. Shatalov
Z. Sitar
F. Shahedipour
K. Udwary
G. S. Tompa
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8878-3

Weitere Artikel der Ausgabe 9/2015

Journal of Materials Science 9/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.