Skip to main content

2018 | OriginalPaper | Buchkapitel

9. Almost Periodic Functions and Weakly Stationary Stochastic Processes

verfasst von : Toru Maruyama

Erschienen in: Fourier Analysis of Economic Phenomena

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is a basic idea for the classical theory of Fourier series to express periodic functions as compositions of harmonic waves. This idea can be successfully extended to nonperiodic functions by means of Fourier transforms. However, we will be confronted with a lot of obstacles when we consider \(\mathfrak {L}^p\)-function spaces in the case p > 2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
I am much indebted to Dunford and Schwartz [7] pp. 281–285, Katznelson [8] pp. 191–200, Kawata [9] II, pp. 96–103, 149–152, [10], [11] pp. 78–86, Loomis [12], Rudin [16, 17] for the contents of this chapter. The classical works cited above are Bohr [4, 5], von Neumann [19], Bochner [2] and Bochner and von Neumann [3].
 
2
In fact, we note that f(0) = 2 and f(x) ≠ 2 if x ≠ 0. If f(x) = 2, we must have \(\cos x=\cos \pi x=1\). It follows that both \(x=2k\pi \; (k\in \mathbb {Z})\) and \(\pi x=2k\pi \; (k\in \mathbb {Z})\) would have to hold good at the same time. However, it is impossible.
 
3
For any ε > 0, there exists some δ > 0 such that
$$\displaystyle \begin{aligned} |f(u)-f(v)|<\frac{\varepsilon}{2} \quad \text{if}\quad |u-v|<\delta. \end{aligned} $$
We make a decomposition \(\eta _j(1 \leqq j \leqq J)\) of [0, Λ] so that distances of any two adjacent points are less than δ. y 0 ∈ [0, Λ] is contained in a small interval [η j, η j+1]. Hence
$$\displaystyle \begin{aligned} |f(x-y_0)-f(x-\eta_j)|&<\frac{\varepsilon}{2}. \\ (\text{Note that}\; |(x-y_0)-(x-\eta_j)|&=|y_0-\eta_j|<\delta. ) \end{aligned} $$
https://static-content.springer.com/image/chp%3A10.1007%2F978-981-13-2730-8_9/MediaObjects/417569_1_En_9_Figa_HTML.gif
This holds good for any \(x \in \mathbb {R}\), and so (9.5) follows.
 
4
https://static-content.springer.com/image/chp%3A10.1007%2F978-981-13-2730-8_9/MediaObjects/417569_1_En_9_Figb_HTML.gif
 
5
This delicate result is called Steinhaus’ theorem. See Dudley [6] p. 80 and Stromberg [18] pp. 297–298.
 
6
\(\bar {\mathrm {co}}A\) is the closed convex hull of a set A. coA is the convex hull of A.
 
7
Select some c n ∈{c 1, c 2, ⋯, c N} such that \(\|(b_1,b_2,\cdots ,b_J)-c_n\|{ }_1<\varepsilon J^{-1}\|f\|{ }_\infty ^{-1}\) and express this c n as
$$\displaystyle \begin{aligned} c_n=(c_{n,1}, c_{n,2}, \cdots ,c_{n,J})=(b_1^{\prime},b_2^{\prime},\cdots,b_J^{\prime}). \end{aligned}$$
Then the following evaluation follows.
$$\displaystyle \begin{aligned} \bigg\|\sum_jb_jf_{y_j}(x)-\sum_jc_{n,j}f_{y_j}(x)\bigg\|{}_\infty \leqq \bigg\|\sum_j(b_j-c_{n,j})f_{y_j}(x)\bigg\|{}_\infty =\bigg\|\sum_j(b_j-b_j^{\prime})f_{y_j}(x)\bigg\|{}_\infty <\varepsilon . \end{aligned}$$
 
8
cf. Appendix C, p. 397.
 
9
In fact, we have
$$\displaystyle \begin{aligned} \widehat{f_y}(\varphi)&=f_y(\hat{\varphi}) =\frac{1}{\sqrt{2\pi}}\int \int \varphi(\xi)e^{-i\xi x}d\xi f(x-y)dx \\ &=\frac{1}{\sqrt{2\pi}}\int \int \varphi(\xi)e^{-i\xi(y+z)}d\xi f(z)dz \\ &=f(\widehat{\varphi\cdot e^{-i\xi y}})=\hat{f}(\varphi\cdot e^{-i\xi y}) = e^{-i\xi y}\hat{f}(\varphi) \end{aligned} $$
for any \(\varphi \in \mathfrak {S}\) by the definition of the Fourier transform of distributions. Hence \(\widehat {f}_y=e^{-i\xi y}\hat {f}\). In the course of computations, f(⋅) and f y(⋅) are tempered distributions defined by the functions f and f y. cf. Appendix C, Sect. C.​3, p. 389.
 
10
We shall give a brief proof. Since g ∈ W(f), there exists a sequence {g n} of functions of the form
$$\displaystyle \begin{aligned} \sum a_k f_{x_k},\; x_k\in\mathbb{R},\; \sum |a_k|\leqq 1 \end{aligned}$$
such that ∥g n − g→ 0 (as n →), by Remark 9.1, 1. Hence it is easy to see that the sequence of tempered distributions defined by g n’s simply converges to the tempered distribution defined by g. Consequently, \(\hat {g_n}\) also simply converges to \(\hat {g}\) in \(\mathfrak {S}'\) (cf. 2 on p. 86). If the support of a function \(\varphi \in \mathfrak {S}\) is contained outside \(\mathrm {supp}\hat {f}\), \(\hat {g}_n(\varphi )=0\) since \(\mathrm {supp}\hat {f}_{x_k}=\mathrm {supp}\hat {f}\). Therefore \(\displaystyle \hat {g}(\varphi )=\lim _{n\rightarrow \infty }\hat {g_n}(\varphi )=0\). We conclude \(\mathrm {supp}\hat {g}\subset \mathrm {supp}\hat {f}\).
 
11
The Fourier transform of e iξx can be evaluated as in Example 4.​9 on p. 85. For any \({\varphi \in \mathfrak {S}}\), we have
$$\displaystyle \begin{aligned}\widehat{e^{i\xi x}}(\varphi)=\int_{-\infty}^\infty e^{i\xi x}\hat{\varphi}(x)dx =\sqrt{2\pi}\varphi(\xi).\end{aligned}$$
Hence
$$\displaystyle \begin{aligned} \widehat{e^{i\xi x}}=\sqrt{2\pi}\delta_\xi \end{aligned}$$
is derived.
 
12
Since \(F\in \mathfrak {L}^1\), the mapping \(y\mapsto \tau _y F\;(\mathbb {R}\rightarrow \mathfrak {L}^1)\) is uniformly continuous by Theorem 5.​1 (p. 1). It is, of course, continuous at y = 0. Hence there exists some θ > 0, for each ε > 0, such that ∥τ y F − F1 < ε provided that |y| < θ. Combining this result and 1, we obtain 2.
 
13
Obviously (9.26) holds good if we use f instead of h.
 
14
It can be verified by
$$\displaystyle \begin{aligned} \eta F(\eta x)\ast c=\int_{\mathbb{R}}\eta F(\eta(x-y))cdy =c\int_{\mathbb{R}}\eta F(\eta&(x-y))dy=c\int_{\mathbb{R}}F(u)du=c \\ &(\text{changing variables: } \eta(x-y)=u ). \end{aligned} $$
 
15
By definition of W(f), we have 0 ∈ σ(f).
 
16
Katznelson [8] 2nd edn., pp. 159–160. There is a difference in the explanation of this result between the second edition and the third one. The latter seems to contain a slip.
 
17
\(\hat {f}\) is the Fourier transform of f in the sense of distribution.
 
18
\(\hat {f}\) is the Fourier transform of the tempered distribution defined by f.
 
19
See Chap. 5, Sect. 5.​4. \(\displaystyle K(x)=\frac {1}{2\pi }\bigg (\sin \frac {x}{2} \bigg /\frac {x}{2}\bigg )^2\).
 
20
\(\hat {f}\), \(\hat {g}_\eta \) are the Fourier transforms of distributions.
 
21
We use such a notation because we wish to interpret the Fourier transform of f as something like a measure and its value at ξ as the mass at ξ.
 
22
In the case n = 1, \(P(x)=e^{i\xi _1 x}\) works. Next assume that there exist λ 1, λ 2, ⋯, λ q which satisfy (a) and (b) for ξ 1, ξ 2, ⋯, ξ n−1. Consider ξ 1, ξ 2, ⋯, ξ n. We may assume that
$$\displaystyle \begin{aligned} \xi_n\notin \sum_{h=1}^q\lambda_h\mathbb{Z} \end{aligned}$$
for any λ 1, λ 2, ⋯, λ q which satisfy (a) and (b). (Otherwise ξ n is also expressible in the form (b) by using λ 1, λ 2, ⋯λ q.) Define λ by
$$\displaystyle \begin{aligned} \lambda=\xi_n-\sum_{h=1}^q\lambda_hz_h \quad \text{for}\quad z_h \in \mathbb{Z}.\end{aligned}$$
Assume that
$$\displaystyle \begin{aligned} \sum_{h=1}^q\theta_h\lambda_h+\theta\lambda=0,\quad \theta_h,\theta\in \mathbb{Q}. \end{aligned}$$
If θ = 0, then θ h = 0 (h = 1, 2, ⋯, q) by (a). Hence we may concentrate at the case θ ≠ 0. Since
$$\displaystyle \begin{aligned} \sum_{h=1}^q\theta_h\lambda_h+\theta\lambda=\sum_{h=1}^q\theta_h\lambda_h +\theta\bigg(\xi_n-\sum_{h=1}^q\lambda_hz_h\bigg)=\sum_{h=1}^q(\theta_h-\theta z_h)\lambda_h+\theta\xi_n=0, \end{aligned}$$
it is obvious that
$$\displaystyle \begin{aligned} \xi_n=-\sum_{h=1}^q\frac{\theta_h-\theta z_h}{\theta}\lambda_h. \end{aligned}$$
Expressing \(\theta _h/\theta =v_h/u_h \; (u_h, v_h\in \mathbb {Z},\, h=1,2,\cdots ,q)\), we denote by u the least common multiple of u h’s. If we write \(\theta _h/\theta =v_h^*/u^*\), we obtain
$$\displaystyle \begin{aligned} \xi_n=-\sum_{h=1}^q\bigg(\frac{v_h^*}{u^*}-z_h\bigg)\lambda_h=-\sum_{h=1}^q(v_h^*-u^*z_h)\frac{\lambda_h}{u^*}. \end{aligned}$$
Furthermore, if we write \(\lambda _h^*=\lambda _h/u^*\;(h=1,2,\cdots, q)\), ξ j’s can be reexpressed as
$$\displaystyle \begin{aligned} \xi_j&=\sum_{h=1}^qu^*A_{j,h}\lambda_h^*,\; j=1,2,\cdots,n-1, \\ \xi_n&=-\sum_{h=1}^q(v_h^*-u^*z_h)\lambda_h^*. \end{aligned} $$
Thus \(\lambda _1^*,\lambda _2^*,\cdots ,\lambda _q^*\) satisfy (a) and (b) for ξ 1, ξ 2, ⋯, ξ n−1 and also
$$\displaystyle \begin{aligned} \xi_n\in \sum_{h=1}^q\lambda_h^*\mathbb{Z}. \end{aligned}$$
This contradicts our assumption. Hence θ must be zero.
 
23
The proof of (i)⇔(ii) is due to Kawata [11] pp. 80–82.
 
24
A function of the form
$$\displaystyle \begin{aligned}f(x)=\sum_{j=1}^na_je^{-i\xi_j u}\quad (\xi_j\in \mathbb{R}) \end{aligned}$$
is called a trigonometric polynomial. Any trigonometric polynomial is almost periodic.
 
25
This observation is based upon Maruyama [15].
 
Literatur
1.
Zurück zum Zitat Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)MATH Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)MATH
2.
Zurück zum Zitat Bochner, S.: Beiträge zur Theorie der fastperiodischen Funktionen, I, II. Math. Ann. 96, 119–147, 383–409 (1927) Bochner, S.: Beiträge zur Theorie der fastperiodischen Funktionen, I, II. Math. Ann. 96, 119–147, 383–409 (1927)
3.
Zurück zum Zitat Bochner, S., von Neumann, J.: Almost periodic functions in a group, II. Trans. Amer. Math. Soc. 37, 21–50 (1935) MathSciNetMATH Bochner, S., von Neumann, J.: Almost periodic functions in a group, II. Trans. Amer. Math. Soc. 37, 21–50 (1935) MathSciNetMATH
4.
Zurück zum Zitat Bohr, H.: Zur Theorie der fastperiodischen Funktionen. I–III. Acta Math. 45, 29–127 (1925); 46, 101–214 (1925); 47, 237–281 (1926) Bohr, H.: Zur Theorie der fastperiodischen Funktionen. I–III. Acta Math. 45, 29–127 (1925); 46, 101–214 (1925); 47, 237–281 (1926)
5.
6.
Zurück zum Zitat Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988) Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1988)
7.
Zurück zum Zitat Dunford, N., Schwartz, J.T.: Linear Operators, Part 1, Interscience, New York (1958) Dunford, N., Schwartz, J.T.: Linear Operators, Part 1, Interscience, New York (1958)
8.
Zurück zum Zitat Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004) Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004)
9.
Zurück zum Zitat Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics). I, II. Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese) Kawata, T.: Ohyo Sugaku Gairon (Elements of Applied Mathematics). I, II. Iwanami Shoten, Tokyo (1950, 1952) (Originally published in Japanese)
10.
Zurück zum Zitat Kawata, T.: On the Fourier series of a stationary stochastic process, I, II. Z. Wahrsch. Verw. Gebiete, 6, 224–245 (1966); 13, 25–38 (1969) Kawata, T.: On the Fourier series of a stationary stochastic process, I, II. Z. Wahrsch. Verw. Gebiete, 6, 224–245 (1966); 13, 25–38 (1969)
11.
Zurück zum Zitat Kawata, T.: Teijo Kakuritsu Katei (Stationary Stochastic Processes). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese) Kawata, T.: Teijo Kakuritsu Katei (Stationary Stochastic Processes). Kyoritsu Shuppan, Tokyo (1985) (Originally published in Japanese)
12.
Zurück zum Zitat Loomis, L.: The spectral characterization of a class of almost periodic functions. Ann. Math. 72, 362–368 (1960) MathSciNetCrossRef Loomis, L.: The spectral characterization of a class of almost periodic functions. Ann. Math. 72, 362–368 (1960) MathSciNetCrossRef
13.
Zurück zum Zitat Malliavin, P.: Integration and Probability. Springer, New York (1995) CrossRef Malliavin, P.: Integration and Probability. Springer, New York (1995) CrossRef
14.
Zurück zum Zitat Maruyama, T.: Sekibun to Kansu-kaiseki (Integration and Functional Analysis). Springer, Tokyo (2006) (Originally published in Japanese) Maruyama, T.: Sekibun to Kansu-kaiseki (Integration and Functional Analysis). Springer, Tokyo (2006) (Originally published in Japanese)
15.
Zurück zum Zitat Maruyama, T.: Fourier analysis of periodic weakly stationary processes. A note on Slutsky’s observation. Adv. Math. Econ. 20, 151–180 (2016)CrossRef Maruyama, T.: Fourier analysis of periodic weakly stationary processes. A note on Slutsky’s observation. Adv. Math. Econ. 20, 151–180 (2016)CrossRef
16.
Zurück zum Zitat Rudin, W.: Weak almost periodic functions and Fourier–Stieltjes transforms. Duke Math. J. 26, 215–220 (1959)MathSciNetCrossRef Rudin, W.: Weak almost periodic functions and Fourier–Stieltjes transforms. Duke Math. J. 26, 215–220 (1959)MathSciNetCrossRef
17.
Zurück zum Zitat Rudin, W.: Fourier Analysis on Groups. Interscience, New York (1962) Rudin, W.: Fourier Analysis on Groups. Interscience, New York (1962)
18.
Zurück zum Zitat Stromberg, K.R.: An Introduction to Classical Real Analysis. American Mathematical Society, Providence (1981) Stromberg, K.R.: An Introduction to Classical Real Analysis. American Mathematical Society, Providence (1981)
19.
Zurück zum Zitat von Neumann, J.: Almost periodic functions in a group, I. Trans. Amer. Math. Soc. 36, 445–492 (1934) von Neumann, J.: Almost periodic functions in a group, I. Trans. Amer. Math. Soc. 36, 445–492 (1934)
Metadaten
Titel
Almost Periodic Functions and Weakly Stationary Stochastic Processes
verfasst von
Toru Maruyama
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2730-8_9