Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

Alternative Carbonless Fuels for Internal Combustion Engines of Vehicles

verfasst von : Gintautas Bureika, Jonas Matijošius, Alfredas Rimkus

Erschienen in: Ecology in Transport: Problems and Solutions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problematics of decarbonisation in road transport sector is considered in this chapter. The impact of growing motor vehicle fleet on pollutant by carbon dioxide (CO2) gases of atmosphere is analysed. The detail analysis of purposeful restriction of permissible level of comparative amount CO2 in car exhaust gases in EU to control the total CO2 emission in road transport sector is presented. The urgent demand to use carbonless fuel additives to stop the growth of total amount of CO2 emission during vehicle traction transient process “from heat power to electric power” is clarified. The introduction of electric cars by itself does not solve the problem of decarbonisation, since it is necessary to assess how electricity is produced, whether from renewable sources or by burning fossil fuel. The objective reasons for the delay in the widespread implementation of electric vehicles are investigated: the distance of one battery charge dissatisfied with drivers, an underdeveloped network of battery recharging stations, problems with the capacity and overloads of state-run electric networks, aspects of determination of time for recharging private cars, and insufficient government support measures. The main characteristics of the integrity of biofuel production and use and the continuous biofuel supply chain are described. Direct and indirect the 4th generation biofuel production processes, photo-fermentation and gaseous reversible reaction for hydrogen production are described. Using of hydrogen as carbonless fuel for internal combustion engines (ICE) slightly improves the burning processes of ICE combustible mixture and this decreases on ICE emission harmfulness. The undisputed advantages of hydrogen as ICE fuel additive encourages the development of hydrogen re-fulling infrastructure. Gained results of performed stand tests to define the efficiency of ICE and exhaust gases toxicity using Brown’s gas (HHO) are described. Finally, basic conclusions are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Mock P (2014) European vehicle market statistics, Pocketbook Mock P (2014) European vehicle market statistics, Pocketbook
3.
Zurück zum Zitat Korakianitis T, Namasivayam AM, Crookes RJ (2011) Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog Energy Combust Sci 37:89–112CrossRef Korakianitis T, Namasivayam AM, Crookes RJ (2011) Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog Energy Combust Sci 37:89–112CrossRef
4.
Zurück zum Zitat Wasiu AB, Aziz ARA, Heikal MR (2012) The effect of carbon dioxide content-natural gas on the performance characteristics of engines: a review. J Appl Sci 12:2346–2350CrossRef Wasiu AB, Aziz ARA, Heikal MR (2012) The effect of carbon dioxide content-natural gas on the performance characteristics of engines: a review. J Appl Sci 12:2346–2350CrossRef
13.
Zurück zum Zitat Selech J, Joachimiak-Lechman K, Klos Z, Kulczycka J, Kurczewski P (2014) Life cycle thinking in small and medium enterprises: the results of research on the implementation of life cycle tools in polish SMEs—part 3: LCC-related aspects. Int J Life Cycle Assess 19:1119–1128CrossRef Selech J, Joachimiak-Lechman K, Klos Z, Kulczycka J, Kurczewski P (2014) Life cycle thinking in small and medium enterprises: the results of research on the implementation of life cycle tools in polish SMEs—part 3: LCC-related aspects. Int J Life Cycle Assess 19:1119–1128CrossRef
15.
Zurück zum Zitat Maghrour Zefreh M, Torok A (2018) Single loop detector data validation and imputation of missing data. Measurement 116:193–198CrossRef Maghrour Zefreh M, Torok A (2018) Single loop detector data validation and imputation of missing data. Measurement 116:193–198CrossRef
18.
Zurück zum Zitat Bielaczyc P, Woodburn J, Szczotka A (2014) An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations. Appl Energy 117:134–141CrossRef Bielaczyc P, Woodburn J, Szczotka A (2014) An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations. Appl Energy 117:134–141CrossRef
19.
Zurück zum Zitat Melaika M (2016) Research of a combustion process in a spark ignition engine, fuelled with gaseous fuel mixtures. Vilnius Gediminas Technical University Melaika M (2016) Research of a combustion process in a spark ignition engine, fuelled with gaseous fuel mixtures. Vilnius Gediminas Technical University
20.
Zurück zum Zitat Rakopoulos CD, Kosmadakis GM, Pariotis EG (2010) Evaluation of a combustion model for the simulation of hydrogen spark-ignition engines using a CFD code. Int J Hydrogen Energy 35:12545–12560CrossRef Rakopoulos CD, Kosmadakis GM, Pariotis EG (2010) Evaluation of a combustion model for the simulation of hydrogen spark-ignition engines using a CFD code. Int J Hydrogen Energy 35:12545–12560CrossRef
21.
Zurück zum Zitat Ma F et al (2010) Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions. Int J Hydrogen Energy 35:12502–12509CrossRef Ma F et al (2010) Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions. Int J Hydrogen Energy 35:12502–12509CrossRef
22.
Zurück zum Zitat Karim G (2003) Hydrogen as a spark ignition engine fuel. Int J Hydrogen Energy 28:569–577CrossRef Karim G (2003) Hydrogen as a spark ignition engine fuel. Int J Hydrogen Energy 28:569–577CrossRef
23.
Zurück zum Zitat Juknelevičius R (2019) Research on biodiesel and hydrogen co-combustion process in compression ignition engine. VGTU leidykla “Technika” Juknelevičius R (2019) Research on biodiesel and hydrogen co-combustion process in compression ignition engine. VGTU leidykla “Technika”
26.
Zurück zum Zitat Alternative fuels and advanced vehicle technologies for improved environmental performance: towards zero carbon transportation (2014) Woodhead Publ Alternative fuels and advanced vehicle technologies for improved environmental performance: towards zero carbon transportation (2014) Woodhead Publ
27.
Zurück zum Zitat Hymel K (2019) If you build it, they will drive: measuring induced demand for vehicle travel in urban areas. Transp Policy 76:57–66CrossRef Hymel K (2019) If you build it, they will drive: measuring induced demand for vehicle travel in urban areas. Transp Policy 76:57–66CrossRef
28.
Zurück zum Zitat Lin B, Wu W (2018) Why people want to buy electric vehicle: An empirical study in first-tier cities of China. Energy Policy 112:233–241CrossRef Lin B, Wu W (2018) Why people want to buy electric vehicle: An empirical study in first-tier cities of China. Energy Policy 112:233–241CrossRef
29.
Zurück zum Zitat Jeong E, Oh C, Lee S (2017) Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety. Accid Anal Prev 104:115–124CrossRef Jeong E, Oh C, Lee S (2017) Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety. Accid Anal Prev 104:115–124CrossRef
30.
Zurück zum Zitat Khan M, Machemehl R (2017) Commercial vehicles time of day choice behavior in urban areas. Transp Res Part A Policy Pract 102:68–83CrossRef Khan M, Machemehl R (2017) Commercial vehicles time of day choice behavior in urban areas. Transp Res Part A Policy Pract 102:68–83CrossRef
32.
Zurück zum Zitat Benajes J, García A, Monsalve-Serrano J, Martínez-Boggio S (2019) Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Convers Manag 190:73–90CrossRef Benajes J, García A, Monsalve-Serrano J, Martínez-Boggio S (2019) Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Convers Manag 190:73–90CrossRef
33.
Zurück zum Zitat Dorcec L, Pevec D, Vdovic H, Babic J, Podobnik V (2019) How do people value electric vehicle charging service? A gamified survey approach. J Clean Prod 210:887–897CrossRef Dorcec L, Pevec D, Vdovic H, Babic J, Podobnik V (2019) How do people value electric vehicle charging service? A gamified survey approach. J Clean Prod 210:887–897CrossRef
34.
Zurück zum Zitat Çağatay Bayindir K, Gözüküçük M, Teke A (2011) A comprehensive overview of hybrid electric vehicle: powertrain configurations, powertrain control techniques and electronic control units. Energy Convers Manag 52:1305–1313CrossRef Çağatay Bayindir K, Gözüküçük M, Teke A (2011) A comprehensive overview of hybrid electric vehicle: powertrain configurations, powertrain control techniques and electronic control units. Energy Convers Manag 52:1305–1313CrossRef
35.
Zurück zum Zitat Figenbaum E (2017) Perspectives on Norway’s supercharged electric vehicle policy. Environ Innov Soc Trans 25:14–34CrossRef Figenbaum E (2017) Perspectives on Norway’s supercharged electric vehicle policy. Environ Innov Soc Trans 25:14–34CrossRef
36.
Zurück zum Zitat Hardman S, Chandan A, Tal G, Turrentine T (2017) The effectiveness of financial purchase incentives for battery electric vehicles—a review of the evidence. Renew Sustain Energy Rev 80:1100–1111CrossRef Hardman S, Chandan A, Tal G, Turrentine T (2017) The effectiveness of financial purchase incentives for battery electric vehicles—a review of the evidence. Renew Sustain Energy Rev 80:1100–1111CrossRef
37.
Zurück zum Zitat Johansson P, Nilsson J-E (2004) An economic analysis of track maintenance costs. Transp Policy 11:277–286CrossRef Johansson P, Nilsson J-E (2004) An economic analysis of track maintenance costs. Transp Policy 11:277–286CrossRef
38.
Zurück zum Zitat Arias MB, Kim M, Bae S (2017) Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Appl Energy 195:738–753CrossRef Arias MB, Kim M, Bae S (2017) Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Appl Energy 195:738–753CrossRef
39.
Zurück zum Zitat Dubey A (2012) Impact of electric vehicle loads on utility distribution network voltages. UT Electronic theses and dissertations Dubey A (2012) Impact of electric vehicle loads on utility distribution network voltages. UT Electronic theses and dissertations
40.
Zurück zum Zitat Wang Q, Liu X, Du J, Kong F (2016) Smart charging for electric vehicles: a survey from the algorithmic perspective. IEEE Commun Surv Tutor 18:1500–1517CrossRef Wang Q, Liu X, Du J, Kong F (2016) Smart charging for electric vehicles: a survey from the algorithmic perspective. IEEE Commun Surv Tutor 18:1500–1517CrossRef
42.
Zurück zum Zitat Langbroek JHM, Franklin JP, Susilo YO (2017) When do you charge your electric vehicle? A stated adaptation approach. Energy Policy 108:565–573CrossRef Langbroek JHM, Franklin JP, Susilo YO (2017) When do you charge your electric vehicle? A stated adaptation approach. Energy Policy 108:565–573CrossRef
43.
Zurück zum Zitat Huang K, Kanaroglou P, Zhang X (2016) The design of electric vehicle charging network. Transp Res Part D Transp Environ 49:1–17CrossRef Huang K, Kanaroglou P, Zhang X (2016) The design of electric vehicle charging network. Transp Res Part D Transp Environ 49:1–17CrossRef
45.
Zurück zum Zitat Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure. Text with EEA relevance Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure. Text with EEA relevance
47.
Zurück zum Zitat Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. 47 Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. 47
48.
Zurück zum Zitat Deb M, Debbarma B, Majumder A, Banerjee R (2016) Performance—emission optimization of a diesel-hydrogen dual fuel operation: a NSGA II coupled TOPSIS MADM approach. Energy 117:281–290CrossRef Deb M, Debbarma B, Majumder A, Banerjee R (2016) Performance—emission optimization of a diesel-hydrogen dual fuel operation: a NSGA II coupled TOPSIS MADM approach. Energy 117:281–290CrossRef
50.
Zurück zum Zitat Kniūkšta B (2017) Biodegalų gamybos ir vartojimo modeliai baltijos šalyse. Manage Theory Stud Rural Bus Infrastruct Develop 39(2):178–202 (In Lithuanian: Biofuel production and consumption patterns in the Baltic countries) Kniūkšta B (2017) Biodegalų gamybos ir vartojimo modeliai baltijos šalyse. Manage Theory Stud Rural Bus Infrastruct Develop 39(2):178–202 (In Lithuanian: Biofuel production and consumption patterns in the Baltic countries)
51.
Zurück zum Zitat Alternative fuels for transportation (2011) CRC Press Alternative fuels for transportation (2011) CRC Press
52.
Zurück zum Zitat Alalwan HA, Alminshid AH, Aljaafari HAS (2019) Promising evolution of biofuel generations. Subject review. Renew Energy Focus 28:127–139CrossRef Alalwan HA, Alminshid AH, Aljaafari HAS (2019) Promising evolution of biofuel generations. Subject review. Renew Energy Focus 28:127–139CrossRef
53.
Zurück zum Zitat Abdullah B et al (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev 107:37–50CrossRef Abdullah B et al (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev 107:37–50CrossRef
54.
Zurück zum Zitat de Sá LRV, de Oliveira Faber M, da Silva AS, Cammarota MC, Ferreira-Leitão VS (2020) Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renew Energy 146:2408–2415CrossRef de Sá LRV, de Oliveira Faber M, da Silva AS, Cammarota MC, Ferreira-Leitão VS (2020) Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renew Energy 146:2408–2415CrossRef
55.
Zurück zum Zitat Leong W-H, Lim J-W, Lam M-K, Uemura Y, Ho Y-C (2018) Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew Sustain Energy Rev 91:950–961CrossRef Leong W-H, Lim J-W, Lam M-K, Uemura Y, Ho Y-C (2018) Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew Sustain Energy Rev 91:950–961CrossRef
56.
Zurück zum Zitat Keskin T, Abubackar HN, Yazgin O, Gunay B, Azbar N (2019) Effect of percolation frequency on biohydrogen production from fruit and vegetable wastes by dry fermentation. Int J Hydrogen Energy 44:18767–18775CrossRef Keskin T, Abubackar HN, Yazgin O, Gunay B, Azbar N (2019) Effect of percolation frequency on biohydrogen production from fruit and vegetable wastes by dry fermentation. Int J Hydrogen Energy 44:18767–18775CrossRef
57.
Zurück zum Zitat Panchuk M, Kryshtopa S, Sładkowski A, Kryshtopa L, Klochko N, Romanyshyn T, Panchuk A, Mandryk I (2019) Efficiency of production of motor biofuels for water and land transport. Naše more 66(3 Supplement):4–10 Panchuk M, Kryshtopa S, Sładkowski A, Kryshtopa L, Klochko N, Romanyshyn T, Panchuk A, Mandryk I (2019) Efficiency of production of motor biofuels for water and land transport. Naše more 66(3 Supplement):4–10
58.
Zurück zum Zitat Mirza SS, Qazi JI, Liang Y, Chen S (2019) Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse. Fuel 255(115805):1–13 Mirza SS, Qazi JI, Liang Y, Chen S (2019) Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse. Fuel 255(115805):1–13
59.
Zurück zum Zitat Sinharoy A, Pakshirajan K (2020) A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renew Energy 147:864–873CrossRef Sinharoy A, Pakshirajan K (2020) A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renew Energy 147:864–873CrossRef
60.
Zurück zum Zitat Srivastava N et al (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37(107384):1–13 Srivastava N et al (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37(107384):1–13
61.
Zurück zum Zitat Veeramalini JB, Selvakumari IAE, Park S, Jayamuthunagai J, Bharathiraja B (2019) Continuous production of biohydrogen from brewery effluent using co-culture of mutated Rhodobacter M 19 and Enterobacter aerogenes. Biores Technol 286(121402):1–6 Veeramalini JB, Selvakumari IAE, Park S, Jayamuthunagai J, Bharathiraja B (2019) Continuous production of biohydrogen from brewery effluent using co-culture of mutated Rhodobacter M 19 and Enterobacter aerogenes. Biores Technol 286(121402):1–6
63.
Zurück zum Zitat Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218:835–849CrossRef Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218:835–849CrossRef
64.
Zurück zum Zitat Williams LO (1980) Hydrogen power: an introduction to hydrogen energy and its applications. Pergamon Press Williams LO (1980) Hydrogen power: an introduction to hydrogen energy and its applications. Pergamon Press
65.
Zurück zum Zitat Gao Y, Jiang J, Meng Y, Yan F, Aihemaiti A (2018) A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag 171:133–155CrossRef Gao Y, Jiang J, Meng Y, Yan F, Aihemaiti A (2018) A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag 171:133–155CrossRef
66.
Zurück zum Zitat Hydrogen and other alternative fuels for air and ground transportation (1995) Wiley Hydrogen and other alternative fuels for air and ground transportation (1995) Wiley
67.
Zurück zum Zitat Dimitriou P, Tsujimura T, Suzuki Y (2019) Low-load hydrogen-diesel dual-fuel engine operation—a combustion efficiency improvement approach. Int J Hydrogen Energy 44:17048–17060CrossRef Dimitriou P, Tsujimura T, Suzuki Y (2019) Low-load hydrogen-diesel dual-fuel engine operation—a combustion efficiency improvement approach. Int J Hydrogen Energy 44:17048–17060CrossRef
68.
Zurück zum Zitat Miyamoto T et al (2011) Effect of hydrogen addition to intake gas on combustion and exhaust emission characteristics of a diesel engine. Int J Hydrogen Energy 36:13138–13149CrossRef Miyamoto T et al (2011) Effect of hydrogen addition to intake gas on combustion and exhaust emission characteristics of a diesel engine. Int J Hydrogen Energy 36:13138–13149CrossRef
69.
Zurück zum Zitat Talibi M, Hellier P, Ladommatos N (2017) Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine. Energy 124:397–412CrossRef Talibi M, Hellier P, Ladommatos N (2017) Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine. Energy 124:397–412CrossRef
70.
Zurück zum Zitat Marreroalfonso E, Gray J, Davis T, Matthews M (2007) Hydrolysis of sodium borohydride with steam. Int J Hydrogen Energy 32:4717–4722CrossRef Marreroalfonso E, Gray J, Davis T, Matthews M (2007) Hydrolysis of sodium borohydride with steam. Int J Hydrogen Energy 32:4717–4722CrossRef
71.
Zurück zum Zitat Khaselev O (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427CrossRef Khaselev O (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427CrossRef
72.
Zurück zum Zitat Parra D, Valverde L, Pino FJ, Patel MK (2019) A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew Sustain Energy Rev 101:279–294CrossRef Parra D, Valverde L, Pino FJ, Patel MK (2019) A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew Sustain Energy Rev 101:279–294CrossRef
73.
Zurück zum Zitat Advances in hydrogen energy (2000) Kluwer Academic/Plenum Publishers Advances in hydrogen energy (2000) Kluwer Academic/Plenum Publishers
74.
Zurück zum Zitat Pandey B, Prajapati YK, Sheth PN (2019) Recent progress in thermochemical techniques to produce hydrogen gas from biomass: a state of the art review. Int J Hydrogen Energy 44:25384–25415CrossRef Pandey B, Prajapati YK, Sheth PN (2019) Recent progress in thermochemical techniques to produce hydrogen gas from biomass: a state of the art review. Int J Hydrogen Energy 44:25384–25415CrossRef
75.
Zurück zum Zitat Li J, Huang H, Kobayashi N, Wang C, Yuan H (2017) Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition. Energy. 126:796–809CrossRef Li J, Huang H, Kobayashi N, Wang C, Yuan H (2017) Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition. Energy. 126:796–809CrossRef
76.
Zurück zum Zitat Santilli R (2006) A new gaseous and combustible form of water. Int J Hydrogen Energy 31:1113–1128CrossRef Santilli R (2006) A new gaseous and combustible form of water. Int J Hydrogen Energy 31:1113–1128CrossRef
77.
Zurück zum Zitat Yilmaz AC, Uludamar E, Aydin K (2010) Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines. Int J Hydrogen Energy 35:11366–11372CrossRef Yilmaz AC, Uludamar E, Aydin K (2010) Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines. Int J Hydrogen Energy 35:11366–11372CrossRef
78.
Zurück zum Zitat Escalante Soberanis MA, Fernandez AM (2010) A review on the technical adaptations for internal combustion engines to operate with gas/hydrogen mixtures. Int J Hydrogen Energy 35:12134–12140CrossRef Escalante Soberanis MA, Fernandez AM (2010) A review on the technical adaptations for internal combustion engines to operate with gas/hydrogen mixtures. Int J Hydrogen Energy 35:12134–12140CrossRef
79.
Zurück zum Zitat Hydrogen fuel: production, transport, and storage (2009) CRC Press Hydrogen fuel: production, transport, and storage (2009) CRC Press
80.
Zurück zum Zitat Handbook of diesel engines (2010) Springer Handbook of diesel engines (2010) Springer
81.
Zurück zum Zitat Surygała J (2008) Wodór jako paliwo. Wydawnictwa Naukowo-Techniczne (In Polish: Hydrogen as a fuel) Surygała J (2008) Wodór jako paliwo. Wydawnictwa Naukowo-Techniczne (In Polish: Hydrogen as a fuel)
82.
Zurück zum Zitat Verma S, Das LM, Kaushik SC, Tyagi SK (2018) An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. Int J Hydrogen Energy 43:2452–2468CrossRef Verma S, Das LM, Kaushik SC, Tyagi SK (2018) An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. Int J Hydrogen Energy 43:2452–2468CrossRef
83.
Zurück zum Zitat Kahraman E, Cihangir Ozcanlı S, Ozerdem B (2007) An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine. Int J Hydrogen Energy 32:2066–2072CrossRef Kahraman E, Cihangir Ozcanlı S, Ozerdem B (2007) An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine. Int J Hydrogen Energy 32:2066–2072CrossRef
84.
Zurück zum Zitat Chen K, Karim GA, Watson HC (2001) Experimental and analytical examination of the development of inhomogeneities and autoignition during rapid compression of hydrogen-oxygen-argon mixtures. J Eng Gas Turbines Power 125:458–465CrossRef Chen K, Karim GA, Watson HC (2001) Experimental and analytical examination of the development of inhomogeneities and autoignition during rapid compression of hydrogen-oxygen-argon mixtures. J Eng Gas Turbines Power 125:458–465CrossRef
85.
Zurück zum Zitat Verhelst S, Maesschalck P, Rombaut N, Sierens R (2009) Increasing the power output of hydrogen internal combustion engines by means of supercharging and exhaust gas recirculation. Int J Hydrogen Energy 34:4406–4412CrossRef Verhelst S, Maesschalck P, Rombaut N, Sierens R (2009) Increasing the power output of hydrogen internal combustion engines by means of supercharging and exhaust gas recirculation. Int J Hydrogen Energy 34:4406–4412CrossRef
86.
Zurück zum Zitat White C, Steeper R, Lutz A (2006) The hydrogen-fueled internal combustion engine: a technical review. Int J Hydrogen Energy 31:1292–1305CrossRef White C, Steeper R, Lutz A (2006) The hydrogen-fueled internal combustion engine: a technical review. Int J Hydrogen Energy 31:1292–1305CrossRef
87.
Zurück zum Zitat Hari Ganesh R et al (2008) Hydrogen fueled spark ignition engine with electronically controlled manifold injection: an experimental study. Renew Energy 33:1324–1333CrossRef Hari Ganesh R et al (2008) Hydrogen fueled spark ignition engine with electronically controlled manifold injection: an experimental study. Renew Energy 33:1324–1333CrossRef
88.
Zurück zum Zitat Dandrea T (2004) The addition of hydrogen to a gasoline-fuelled SI engine. Int J Hydrogen Energy 29:1541–1552CrossRef Dandrea T (2004) The addition of hydrogen to a gasoline-fuelled SI engine. Int J Hydrogen Energy 29:1541–1552CrossRef
89.
Zurück zum Zitat Yan F, Xu L, Wang Y (2018) Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renew Sustain Energy Rev 82:1457–1488CrossRef Yan F, Xu L, Wang Y (2018) Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renew Sustain Energy Rev 82:1457–1488CrossRef
90.
Zurück zum Zitat Dimopoulos P, Rechsteiner C, Soltic P, Laemmle C, Boulouchos K (2007) Increase of passenger car engine efficiency with low engine-out emissions using hydrogen–natural gas mixtures: a thermodynamic analysis. Int J Hydrogen Energy 32:3073–3083CrossRef Dimopoulos P, Rechsteiner C, Soltic P, Laemmle C, Boulouchos K (2007) Increase of passenger car engine efficiency with low engine-out emissions using hydrogen–natural gas mixtures: a thermodynamic analysis. Int J Hydrogen Energy 32:3073–3083CrossRef
91.
Zurück zum Zitat Zhao H (ed) (2010) Advanced direct injection combustion engine technologies and development: gasoline and gas engines. Woodhead Publishing Zhao H (ed) (2010) Advanced direct injection combustion engine technologies and development: gasoline and gas engines. Woodhead Publishing
93.
Zurück zum Zitat Baratta M, Rapetto N (2015) Mixture formation analysis in a direct-injection NG SI engine under different injection timings. Fuel 159:675–688CrossRef Baratta M, Rapetto N (2015) Mixture formation analysis in a direct-injection NG SI engine under different injection timings. Fuel 159:675–688CrossRef
95.
Zurück zum Zitat Stojkovic BD, Fansler TD, Drake MC, Sick V (2005) High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine. Proc Combust Inst 30:2657–2665CrossRef Stojkovic BD, Fansler TD, Drake MC, Sick V (2005) High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine. Proc Combust Inst 30:2657–2665CrossRef
96.
Zurück zum Zitat Ji C, Wang S (2009) Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int J Hydrogen Energy 34:7823–7834CrossRef Ji C, Wang S (2009) Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions. Int J Hydrogen Energy 34:7823–7834CrossRef
97.
Zurück zum Zitat Ji C, Liu X, Gao B, Wang S, Yang J (2013) Numerical investigation on the combustion process in a spark-ignited engine fueled with hydrogen–gasoline blends. Int J Hydrogen Energy 38:11149–11155CrossRef Ji C, Liu X, Gao B, Wang S, Yang J (2013) Numerical investigation on the combustion process in a spark-ignited engine fueled with hydrogen–gasoline blends. Int J Hydrogen Energy 38:11149–11155CrossRef
98.
Zurück zum Zitat Köse H, Ciniviz M (2013) An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen. Fuel Process Technol 114:26–34CrossRef Köse H, Ciniviz M (2013) An experimental investigation of effect on diesel engine performance and exhaust emissions of addition at dual fuel mode of hydrogen. Fuel Process Technol 114:26–34CrossRef
99.
Zurück zum Zitat Saravanan N, Nagarajan G, Dhanasekaran C, Kalaiselvan K (2007) Experimental investigation of hydrogen port fuel injection in DI diesel engine. Int J Hydrogen Energy 32:4071–4080CrossRef Saravanan N, Nagarajan G, Dhanasekaran C, Kalaiselvan K (2007) Experimental investigation of hydrogen port fuel injection in DI diesel engine. Int J Hydrogen Energy 32:4071–4080CrossRef
100.
Zurück zum Zitat Homan H, Reynolds R, Deboer P, Mclean W (1979) Hydrogen-fueled diesel engine without timed ignition. Int J Hydrogen Energy 4:315–325CrossRef Homan H, Reynolds R, Deboer P, Mclean W (1979) Hydrogen-fueled diesel engine without timed ignition. Int J Hydrogen Energy 4:315–325CrossRef
101.
Zurück zum Zitat Nguyen TA, Mikami M (2013) Effect of hydrogen addition to intake air on combustion noise from a diesel engine. Int J Hydrogen Energy 38:4153–4162CrossRef Nguyen TA, Mikami M (2013) Effect of hydrogen addition to intake air on combustion noise from a diesel engine. Int J Hydrogen Energy 38:4153–4162CrossRef
102.
Zurück zum Zitat Szwaja S, Grab-Rogalinski K (2009) Hydrogen combustion in a compression ignition diesel engine. Int J Hydrogen Energy 34:4413–4421CrossRef Szwaja S, Grab-Rogalinski K (2009) Hydrogen combustion in a compression ignition diesel engine. Int J Hydrogen Energy 34:4413–4421CrossRef
103.
Zurück zum Zitat Saravanan N, Nagarajan G (2008) An experimental investigation of hydrogen-enriched air induction in a diesel engine system. Int J Hydrogen Energy 33:1769–1775CrossRef Saravanan N, Nagarajan G (2008) An experimental investigation of hydrogen-enriched air induction in a diesel engine system. Int J Hydrogen Energy 33:1769–1775CrossRef
104.
Zurück zum Zitat Alrazen HA, Abu Talib AR, Adnan R, Ahmad KA A review of the effect of hydrogen addition on the performance and emissions of the compression—ignition engine. Renew Sustain Energy Rev 54:785–796 Alrazen HA, Abu Talib AR, Adnan R, Ahmad KA A review of the effect of hydrogen addition on the performance and emissions of the compression—ignition engine. Renew Sustain Energy Rev 54:785–796
105.
Zurück zum Zitat Tripathi G, Sharma P, Dhar A, Sadiki A (2019) Computational investigation of diesel injection strategies in hydrogen-diesel dual fuel engine. Sustain Energy Technol Assess 36(100543):1–10 Tripathi G, Sharma P, Dhar A, Sadiki A (2019) Computational investigation of diesel injection strategies in hydrogen-diesel dual fuel engine. Sustain Energy Technol Assess 36(100543):1–10
108.
Zurück zum Zitat Yanxing Z, Maoqiong G, Yuan Z, Xueqiang D, Jun S (2019) Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int J Hydrogen Energy 44:16833–16840CrossRef Yanxing Z, Maoqiong G, Yuan Z, Xueqiang D, Jun S (2019) Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int J Hydrogen Energy 44:16833–16840CrossRef
109.
Zurück zum Zitat Rimkus A (2013) Vidaus degimo variklio darbo efektyvumo didinimas panaudojant Brauno dujas. Vilnius Gediminas Technical University (In Lithuanian: Improvement of efficiency of operation of an internal combustion engine by using Brown’s gas) Rimkus A (2013) Vidaus degimo variklio darbo efektyvumo didinimas panaudojant Brauno dujas. Vilnius Gediminas Technical University (In Lithuanian: Improvement of efficiency of operation of an internal combustion engine by using Brown’s gas)
112.
Zurück zum Zitat Baltacioglu MK, Arat HT, Özcanli M, Aydin K (2016) Experimental comparison of pure hydrogen and HHO (hydroxy) enriched biodiesel (B10) fuel in a commercial diesel engine. Int J Hydrogen Energy 41:8347–8353CrossRef Baltacioglu MK, Arat HT, Özcanli M, Aydin K (2016) Experimental comparison of pure hydrogen and HHO (hydroxy) enriched biodiesel (B10) fuel in a commercial diesel engine. Int J Hydrogen Energy 41:8347–8353CrossRef
113.
Zurück zum Zitat Ismail TM et al (2018) Performance of hybrid compression ignition engine using hydroxy (HHO) from dry cell. Energy Convers Manag 155:287–300CrossRef Ismail TM et al (2018) Performance of hybrid compression ignition engine using hydroxy (HHO) from dry cell. Energy Convers Manag 155:287–300CrossRef
114.
Zurück zum Zitat Subramanian B, Ismail S (2018) Production and use of HHO gas in IC engines. Int J Hydrogen Energy 43:7140–7154CrossRef Subramanian B, Ismail S (2018) Production and use of HHO gas in IC engines. Int J Hydrogen Energy 43:7140–7154CrossRef
115.
Zurück zum Zitat Uludamar E (2018) Effect of hydroxy and hydrogen gas addition on diesel engine fuelled with microalgae biodiesel. Int J Hydrogen Energy 43:18028–18036CrossRef Uludamar E (2018) Effect of hydroxy and hydrogen gas addition on diesel engine fuelled with microalgae biodiesel. Int J Hydrogen Energy 43:18028–18036CrossRef
116.
Zurück zum Zitat Yilmaz IT, Gumus M (2018) Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine. Energy 142:1104–1113CrossRef Yilmaz IT, Gumus M (2018) Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine. Energy 142:1104–1113CrossRef
117.
Zurück zum Zitat Srinivasan S, Salzano F (1977) Prospects for hydrogen production by water electrolysis to be competitive with conventional methods. Int J Hydrogen Energy 2:53–59CrossRef Srinivasan S, Salzano F (1977) Prospects for hydrogen production by water electrolysis to be competitive with conventional methods. Int J Hydrogen Energy 2:53–59CrossRef
118.
Zurück zum Zitat Polverino P, D’Aniello F, Arsie I, Pianese C (2019) Study of the energetic needs for the on-board production of oxy-hydrogen as fuel additive in internal combustion engines. Energy Convers Manag 179:114–131CrossRef Polverino P, D’Aniello F, Arsie I, Pianese C (2019) Study of the energetic needs for the on-board production of oxy-hydrogen as fuel additive in internal combustion engines. Energy Convers Manag 179:114–131CrossRef
120.
Zurück zum Zitat Rimkus A, Pukalskas S, Matijošius J, Sokolovskij E (2013) Betterment of ecological parameters of a diesel engine using Brown‘s gas. J Environ Eng Landscape Manag 21:133–140CrossRef Rimkus A, Pukalskas S, Matijošius J, Sokolovskij E (2013) Betterment of ecological parameters of a diesel engine using Brown‘s gas. J Environ Eng Landscape Manag 21:133–140CrossRef
121.
Zurück zum Zitat Selim M (2005) Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines. Fuel 84:961–971CrossRef Selim M (2005) Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines. Fuel 84:961–971CrossRef
122.
Zurück zum Zitat Wang J, Chen H, Liu B, Huang Z (2008) Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas–hydrogen blends. Int J Hydrogen Energy 33:4876–4883CrossRef Wang J, Chen H, Liu B, Huang Z (2008) Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas–hydrogen blends. Int J Hydrogen Energy 33:4876–4883CrossRef
123.
Zurück zum Zitat Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill
124.
Zurück zum Zitat Rodrigues Filho FA et al (2016) E25 stratified torch ignition engine performance, CO2 emission and combustion analysis. Energy Convers Manag 115:299–307CrossRef Rodrigues Filho FA et al (2016) E25 stratified torch ignition engine performance, CO2 emission and combustion analysis. Energy Convers Manag 115:299–307CrossRef
Metadaten
Titel
Alternative Carbonless Fuels for Internal Combustion Engines of Vehicles
verfasst von
Gintautas Bureika
Jonas Matijošius
Alfredas Rimkus
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-42323-0_1

    Premium Partner