Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

An Augmented Reality Environment to Provide Visual Feedback to Amputees During sEMG Data Acquisitions

verfasst von : Francesca Palermo, Matteo Cognolato, Ivan Eggel, Manfredo Atzori, Henning Müller

Erschienen in: Towards Autonomous Robotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Myoelectric hand prostheses have the potential to improve the quality of life of hand amputees. Still, the rejection rate of functional prostheses in the adult population is high. One of the causes is the long time for fitting the prosthesis and the lack of feedback during training. Moreover, prosthesis control is often unnatural and requires mental effort during the training. Virtual and augmented reality devices can help to improve these difficulties and reduce phantom limb pain. Amputees can start training the residual limb muscles with a weightless virtual hand earlier than possible with a real prosthesis. When activating the muscles related to a specific grasp, the subjects receive a visual feedback from the virtual hand. To the best of our knowledge, this work presents one of the first portable augmented reality environment for transradial amputees that combines two devices available on the market: the Microsoft HoloLens and the Thalmic labs Myo. In the augmented environment, rendered by the HoloLens, the user can control a virtual hand with surface electromyography. By using the virtual hand, the user can move objects in augmented reality and train to activate the right muscles for each movement through visual feedback. The environment presented represents a resource for rehabilitation and for scientists. It helps hand amputees to train using prosthetic hands right after the surgery. Scientists can use the environment to develop real time control experiments, without the logistical disadvantages related to dealing with a real prosthetic hand but with the advantages of a realistic visual feedback.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anderson, F., Bischof, W.F.: Augmented reality improves myoelectric prosthesis training. Int. J. Disabil. Hum. Dev. 13(3), 349–354 (2014)CrossRef Anderson, F., Bischof, W.F.: Augmented reality improves myoelectric prosthesis training. Int. J. Disabil. Hum. Dev. 13(3), 349–354 (2014)CrossRef
2.
Zurück zum Zitat Atzori, M., et al.: Clinical parameter effect on the capability to control myoelectric robotic prosthetic hands. J. Rehabil. Res. Dev. 53(3), 345–358 (2016)CrossRef Atzori, M., et al.: Clinical parameter effect on the capability to control myoelectric robotic prosthetic hands. J. Rehabil. Res. Dev. 53(3), 345–358 (2016)CrossRef
3.
Zurück zum Zitat Atzori, M., Gijsberts, A., Müller, H., Caputo, B.: Classification of hand movements in amputated subjects by semg and accelerometers. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3545–3549. IEEE (2014) Atzori, M., Gijsberts, A., Müller, H., Caputo, B.: Classification of hand movements in amputated subjects by semg and accelerometers. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3545–3549. IEEE (2014)
4.
Zurück zum Zitat Atzori, M., Müller, H.: Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9, 162 (2015)CrossRef Atzori, M., Müller, H.: Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9, 162 (2015)CrossRef
5.
Zurück zum Zitat Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007)CrossRef Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007)CrossRef
6.
Zurück zum Zitat Bullock, I.M., Zheng, J.Z., De La Rosa, S., Guertler, C., Dollar, A.M.: Grasp frequency and usage in daily household and machine shop tasks. IEEE Trans. Haptics 6(3), 296–308 (2013)CrossRef Bullock, I.M., Zheng, J.Z., De La Rosa, S., Guertler, C., Dollar, A.M.: Grasp frequency and usage in daily household and machine shop tasks. IEEE Trans. Haptics 6(3), 296–308 (2013)CrossRef
7.
Zurück zum Zitat Castellini, C., Gruppioni, E., Davalli, A., Sandini, G.: Fine detection of grasp force and posture by amputees via surface electromyography. J. Physiol.-Paris 103(3–5), 255–262 (2009)CrossRef Castellini, C., Gruppioni, E., Davalli, A., Sandini, G.: Fine detection of grasp force and posture by amputees via surface electromyography. J. Physiol.-Paris 103(3–5), 255–262 (2009)CrossRef
8.
Zurück zum Zitat Cipriani, C., et al.: Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 19(3), 260–270 (2011)CrossRef Cipriani, C., et al.: Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 19(3), 260–270 (2011)CrossRef
9.
Zurück zum Zitat Cognolato, M., et al.: Hand gesture classification in transradial amputees using the Myo armband classifier. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 156–161. IEEE (2018) Cognolato, M., et al.: Hand gesture classification in transradial amputees using the Myo armband classifier. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 156–161. IEEE (2018)
10.
Zurück zum Zitat Davidson, J.: A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J. Hand Ther. 15(1), 62–70 (2002)CrossRef Davidson, J.: A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J. Hand Ther. 15(1), 62–70 (2002)CrossRef
11.
Zurück zum Zitat Dupont, A.C., Morin, E.L.: A myoelectric control evaluation and trainer system. IEEE Trans. Rehabil. Eng. 2(2), 100–107 (1994)CrossRef Dupont, A.C., Morin, E.L.: A myoelectric control evaluation and trainer system. IEEE Trans. Rehabil. Eng. 2(2), 100–107 (1994)CrossRef
12.
Zurück zum Zitat Farina, D., et al.: The extraction of neural information from the surface emg for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 797–809 (2014)CrossRef Farina, D., et al.: The extraction of neural information from the surface emg for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 797–809 (2014)CrossRef
13.
Zurück zum Zitat Jang, C.H., et al.: A survey on activities of daily living and occupations of upper extremity amputees. Ann. Rehabil. Med. 35(6), 907–921 (2011)CrossRef Jang, C.H., et al.: A survey on activities of daily living and occupations of upper extremity amputees. Ann. Rehabil. Med. 35(6), 907–921 (2011)CrossRef
14.
Zurück zum Zitat Kuttuva, M., Burdea, G., Flint, J., Craelius, W.: Manipulation practice for upper-limb amputees using virtual reality. Presence: Teleoperators Virtual Environ. 14(2), 175–182 (2005)CrossRef Kuttuva, M., Burdea, G., Flint, J., Craelius, W.: Manipulation practice for upper-limb amputees using virtual reality. Presence: Teleoperators Virtual Environ. 14(2), 175–182 (2005)CrossRef
15.
Zurück zum Zitat Lamounier, E., Lopes, K., Cardoso, A., Andrade, A., Soares, A.: On the use of virtual and augmented reality for upper limb prostheses training and simulation. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2451–2454. IEEE (2010) Lamounier, E., Lopes, K., Cardoso, A., Andrade, A., Soares, A.: On the use of virtual and augmented reality for upper limb prostheses training and simulation. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2451–2454. IEEE (2010)
16.
Zurück zum Zitat Mendez, I., et al.: Evaluation of the Myo armband for the classification of hand motions. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1211–1214. IEEE (2017) Mendez, I., et al.: Evaluation of the Myo armband for the classification of hand motions. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1211–1214. IEEE (2017)
17.
Zurück zum Zitat Ortiz-Catalan, M., et al.: Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet 388(10062), 2885–2894 (2016)CrossRef Ortiz-Catalan, M., et al.: Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet 388(10062), 2885–2894 (2016)CrossRef
18.
Zurück zum Zitat Palermo, F., Cognolato, M., Gijsberts, A., Müller, H., Caputo, B., Atzori, M.: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data, pp. 1154–1159 (2017) Palermo, F., Cognolato, M., Gijsberts, A., Müller, H., Caputo, B., Atzori, M.: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data, pp. 1154–1159 (2017)
19.
Zurück zum Zitat Peerdeman, B., et al.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48(6), 719–738 (2011)CrossRef Peerdeman, B., et al.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48(6), 719–738 (2011)CrossRef
20.
Zurück zum Zitat Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., Müller, H., Atzori, M.: Comparison of six electromyography acquisition setups on hand movement classification tasks. PloS one 12(10), e0186132 (2017)CrossRef Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., Müller, H., Atzori, M.: Comparison of six electromyography acquisition setups on hand movement classification tasks. PloS one 12(10), e0186132 (2017)CrossRef
21.
Zurück zum Zitat Roeschlein, R., Domholdt, E.: Factors related to successful upper extremity prosthetic use. Prosthet. Orthot. Int. 13(1), 14–18 (1989) Roeschlein, R., Domholdt, E.: Factors related to successful upper extremity prosthetic use. Prosthet. Orthot. Int. 13(1), 14–18 (1989)
22.
Zurück zum Zitat Silcox, D.H., Rooks, M.D., Vogel, R.R., Fleming, L.L.: Myoelectric prostheses. a long-term follow-up and a study of the use of alternate prostheses. JBJS 75(12), 1781–1789 (1993)CrossRef Silcox, D.H., Rooks, M.D., Vogel, R.R., Fleming, L.L.: Myoelectric prostheses. a long-term follow-up and a study of the use of alternate prostheses. JBJS 75(12), 1781–1789 (1993)CrossRef
23.
Zurück zum Zitat Soares, A., Andrade, A., Lamounier, E., Carrijo, R.: The development of a virtual myoelectric prosthesis controlled by an emg pattern recognition system based on neural networks. J. Intell. Inf. Syst. 21(2), 127–141 (2003)CrossRef Soares, A., Andrade, A., Lamounier, E., Carrijo, R.: The development of a virtual myoelectric prosthesis controlled by an emg pattern recognition system based on neural networks. J. Intell. Inf. Syst. 21(2), 127–141 (2003)CrossRef
24.
Zurück zum Zitat Takeuchi, T., Wada, T., Mukobaru, M., Doi, S.: A training system for myoelectric prosthetic hand in virtual environment. In: IEEE/ICME International Conference on Complex Medical Engineering, CME 2007, pp. 1351–1356. IEEE (2007) Takeuchi, T., Wada, T., Mukobaru, M., Doi, S.: A training system for myoelectric prosthetic hand in virtual environment. In: IEEE/ICME International Conference on Complex Medical Engineering, CME 2007, pp. 1351–1356. IEEE (2007)
25.
Zurück zum Zitat Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)CrossRef Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)CrossRef
Metadaten
Titel
An Augmented Reality Environment to Provide Visual Feedback to Amputees During sEMG Data Acquisitions
verfasst von
Francesca Palermo
Matteo Cognolato
Ivan Eggel
Manfredo Atzori
Henning Müller
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-25332-5_1