Skip to main content
Erschienen in: 3D Research 2/2019

01.06.2019 | 3DR Express

An Automatic Threshold Segmentation and Mining Optimum Credential Features by Using HSV Model

verfasst von: A. Prabhu Chakkaravarthy, A. Chandrasekar

Erschienen in: 3D Research | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this present study a perfect outcome of skin lesion in the computerized image analysis is used to segment the abnormal layers on the skin. The dermatologist finds difficult for easy identification of skin lesion. A computational tool should be developed to assist the dermatologist for diagnosis. This paper reports the differentiation of segmentation with various techniques. The review is made with related works to the current proposed method as a comparative study with plenty of fundamental steps like image acquisition, pre-processing and segmentation. In this work, the asymmetric pattern extractions from the dermoscopic images are segmented by the HSV segmentation to find the contour image. An automatic segregation of RGB–HSV is incorporated in the masked threshold on the proposed system which segments the lesion. The techniques involved in each stage are perfectly explained. From the state of RGB input and handling of pre-processing and segmentation were evaluated effectively. The outcome of this result is compared with other segmentation techniques to improve the result. The proposed performance measures between Ground Truth image and Segmented Image provides best-offered values of accuracy up to 96% for PH2 dataset and 95% for ISIC 2016 Dataset.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yuan, Y., Chao, M., & Lo, Y.-C. (2016). Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Transactions on Medical Imaging, 36(9), 1876–1886.CrossRef Yuan, Y., Chao, M., & Lo, Y.-C. (2016). Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Transactions on Medical Imaging, 36(9), 1876–1886.CrossRef
2.
Zurück zum Zitat Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P.-A. (2016). Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Transactions on Medical Imaging, 36(4), 994–1004.CrossRef Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P.-A. (2016). Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Transactions on Medical Imaging, 36(4), 994–1004.CrossRef
3.
Zurück zum Zitat Lei, Y., Yuan, W., Wang, H., Wenhu, Y., & Bo, W. (2017). A skin segmentation algorithm based on stacked auto encoders. IEEE Transactions on Multimedia, 19(4), 740–749.CrossRef Lei, Y., Yuan, W., Wang, H., Wenhu, Y., & Bo, W. (2017). A skin segmentation algorithm based on stacked auto encoders. IEEE Transactions on Multimedia, 19(4), 740–749.CrossRef
4.
Zurück zum Zitat Yang, J., Xie, F., Fan, H., Jiang, Z., & Liu, J. (2018). Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access, 6, 65130–65138.CrossRef Yang, J., Xie, F., Fan, H., Jiang, Z., & Liu, J. (2018). Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access, 6, 65130–65138.CrossRef
5.
Zurück zum Zitat Sultana, N. N., Mandal, B., & Puhan, N. B. (2018). Deep residual network with regularised fisher framework for detection of melanoma. IET Computer Vision, 12(8), 1096–1104.CrossRef Sultana, N. N., Mandal, B., & Puhan, N. B. (2018). Deep residual network with regularised fisher framework for detection of melanoma. IET Computer Vision, 12(8), 1096–1104.CrossRef
6.
Zurück zum Zitat Sadri, A. R., Azarianpour, S., Zekri, M., Celebi, M. E., & Sadri, S. (2017). WN-based approach to melanoma diagnosis from dermoscopy images. IET Image Processing, 11(7), 475–482.CrossRef Sadri, A. R., Azarianpour, S., Zekri, M., Celebi, M. E., & Sadri, S. (2017). WN-based approach to melanoma diagnosis from dermoscopy images. IET Image Processing, 11(7), 475–482.CrossRef
7.
Zurück zum Zitat Al Abbadi, N. K., Dahir, N. S., AL-Dhalimi, M. A., & Restom, H. (2010). Psoriasis detection using skin color and texture features. Journal of Computer Science, 6(6), 648–652.CrossRef Al Abbadi, N. K., Dahir, N. S., AL-Dhalimi, M. A., & Restom, H. (2010). Psoriasis detection using skin color and texture features. Journal of Computer Science, 6(6), 648–652.CrossRef
8.
Zurück zum Zitat Saez, A., Sanchez-Monedero, J., Gutierrez, P. A., & Hervas-Martınez, C. (2016). Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Transactions on Medical Imaging, 35(4), 1036–1045.CrossRef Saez, A., Sanchez-Monedero, J., Gutierrez, P. A., & Hervas-Martınez, C. (2016). Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Transactions on Medical Imaging, 35(4), 1036–1045.CrossRef
10.
Zurück zum Zitat Rastgoo, M., Garcia, R., Morel, O., & Marzani, F. (2015). Automatic differentiation of melanoma from dysplastic nevi. Computerized Medical Imaging and Graphics, 43, 44–52.CrossRef Rastgoo, M., Garcia, R., Morel, O., & Marzani, F. (2015). Automatic differentiation of melanoma from dysplastic nevi. Computerized Medical Imaging and Graphics, 43, 44–52.CrossRef
11.
Zurück zum Zitat Jaisakthi, S. M., Mirunalini, P., & Aravindan, C. (2018). Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Computer Vision, 12(8), 1088–1095.CrossRef Jaisakthi, S. M., Mirunalini, P., & Aravindan, C. (2018). Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Computer Vision, 12(8), 1088–1095.CrossRef
12.
Zurück zum Zitat Pathan, S., Gopalakrishna Prabhu, K., & Siddalingaswamy, P. C. (2018). Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—A review. Biomedical Signal Processing and Control, 39, 237–262.CrossRef Pathan, S., Gopalakrishna Prabhu, K., & Siddalingaswamy, P. C. (2018). Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—A review. Biomedical Signal Processing and Control, 39, 237–262.CrossRef
13.
Zurück zum Zitat Zortea, M., Flores, E., & Scharcanski, J. (2017). A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recognition, 64, 92–104.CrossRef Zortea, M., Flores, E., & Scharcanski, J. (2017). A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recognition, 64, 92–104.CrossRef
14.
Zurück zum Zitat Chandrasekharan, R., & Sasikumar, M. (2018). Fuzzy transform for contrast enhancement of nonuniform illumination images. IEEE Signal Processing Letters, 25(6), 813–817.CrossRef Chandrasekharan, R., & Sasikumar, M. (2018). Fuzzy transform for contrast enhancement of nonuniform illumination images. IEEE Signal Processing Letters, 25(6), 813–817.CrossRef
15.
Zurück zum Zitat Ndjiongue, A. R., Shongwe, T., & Ferreira, H. C. (2017). Closed-form BER expressions for HSV-based MPSK-CSK systems. IEEE Communications Letters, 21(5), 1023–1026.CrossRef Ndjiongue, A. R., Shongwe, T., & Ferreira, H. C. (2017). Closed-form BER expressions for HSV-based MPSK-CSK systems. IEEE Communications Letters, 21(5), 1023–1026.CrossRef
16.
Zurück zum Zitat Zhou, M., Jin, K., Wang, S., Ye, J., & Qian, D. (2018). Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 65(3), 521–527.CrossRef Zhou, M., Jin, K., Wang, S., Ye, J., & Qian, D. (2018). Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 65(3), 521–527.CrossRef
17.
Zurück zum Zitat Zhang, T., Hai-Miao, H., & Li, B. (2018). A naturalness preserved fast dehazing algorithm using HSV color space. IEEE ACCESS, 6, 10644–10649.CrossRef Zhang, T., Hai-Miao, H., & Li, B. (2018). A naturalness preserved fast dehazing algorithm using HSV color space. IEEE ACCESS, 6, 10644–10649.CrossRef
18.
Zurück zum Zitat Treece, G. (2016). The bitonic filter: Linear filtering in an edge-preserving morphological framework. IEEE Transactions on Image Processing, 25(11), 5199–5211.MathSciNetMATHCrossRef Treece, G. (2016). The bitonic filter: Linear filtering in an edge-preserving morphological framework. IEEE Transactions on Image Processing, 25(11), 5199–5211.MathSciNetMATHCrossRef
19.
Zurück zum Zitat Nandal, A., Bhaskar, V., & Dhaka, A. (2018). Contrast-based image enhancement algorithm using grey-scale and colour space. IET Signal Processing, 12(4), 514–521.CrossRef Nandal, A., Bhaskar, V., & Dhaka, A. (2018). Contrast-based image enhancement algorithm using grey-scale and colour space. IET Signal Processing, 12(4), 514–521.CrossRef
20.
Zurück zum Zitat Sadeghi, M., Lee, T. K., McLean, D., Lui, H., & Stella Atkins, M. (2013). Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Transactions on Medical Imaging, 32(5), 849–861.CrossRef Sadeghi, M., Lee, T. K., McLean, D., Lui, H., & Stella Atkins, M. (2013). Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Transactions on Medical Imaging, 32(5), 849–861.CrossRef
21.
Zurück zum Zitat Guan, Y.-P., Jin-Hui, D., & Zhang, C.-Q. (2012). Improved HSV-based Gaussian mixture modelling for moving foreground segmentation. Advances on Digital Television and Wireless Multimedia Communications, 331, 52–58.CrossRef Guan, Y.-P., Jin-Hui, D., & Zhang, C.-Q. (2012). Improved HSV-based Gaussian mixture modelling for moving foreground segmentation. Advances on Digital Television and Wireless Multimedia Communications, 331, 52–58.CrossRef
22.
Zurück zum Zitat Ahn, E., Kim, J., Bi, L., Kumar, A., Li, C., Fulham, M., et al. (2017). Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE Journal of Biomedical and Health Informatics, 21(6), 1685–1693.CrossRef Ahn, E., Kim, J., Bi, L., Kumar, A., Li, C., Fulham, M., et al. (2017). Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE Journal of Biomedical and Health Informatics, 21(6), 1685–1693.CrossRef
23.
Zurück zum Zitat Burdescu, D. D., Brezovan, M., Ganea, E., & Stanescu, L. (2009). A new method for segmentation of images represented in a HSV color space. Advanced Concepts for Intelligent Vision Systems, 5807, 606–617.CrossRef Burdescu, D. D., Brezovan, M., Ganea, E., & Stanescu, L. (2009). A new method for segmentation of images represented in a HSV color space. Advanced Concepts for Intelligent Vision Systems, 5807, 606–617.CrossRef
24.
Zurück zum Zitat Zhao, M., Zhang, H., & Meng, L. (2016). An Angle Structure descriptor for image retrieval. China Communications, 13(8), 222–230.CrossRef Zhao, M., Zhang, H., & Meng, L. (2016). An Angle Structure descriptor for image retrieval. China Communications, 13(8), 222–230.CrossRef
25.
Zurück zum Zitat HongmingXu, C. L., Berendt, R., Jha, N., & Mandal, M. (2017). Automatic nuclei detection based on generalized laplacian of Gaussian filters. IEEE Journal of Biomedical and Health Informatics, 21(3), 826–837.CrossRef HongmingXu, C. L., Berendt, R., Jha, N., & Mandal, M. (2017). Automatic nuclei detection based on generalized laplacian of Gaussian filters. IEEE Journal of Biomedical and Health Informatics, 21(3), 826–837.CrossRef
26.
Zurück zum Zitat Cheng, R., Xia, L., Ran, Y., Rohollahnejad, J., Zhou, J., & Wen, Y. (2015). Interrogation of ultrashort Bragg grating sensors using shifted optical Gaussian filters. IEEE Photonics Technology Letters, 27(17), 1833–1836.CrossRef Cheng, R., Xia, L., Ran, Y., Rohollahnejad, J., Zhou, J., & Wen, Y. (2015). Interrogation of ultrashort Bragg grating sensors using shifted optical Gaussian filters. IEEE Photonics Technology Letters, 27(17), 1833–1836.CrossRef
27.
Zurück zum Zitat Charalampidis, D. (2016). Recursive implementation of the Gaussian filter using truncated cosine functions. IEEE Transactions on Signal Processing, 64(14), 3554–3565.MathSciNetMATHCrossRef Charalampidis, D. (2016). Recursive implementation of the Gaussian filter using truncated cosine functions. IEEE Transactions on Signal Processing, 64(14), 3554–3565.MathSciNetMATHCrossRef
28.
Zurück zum Zitat Pham, T. D. (2015). Estimating parameters of optimal average and adaptive wiener filters for image restoration with sequential Gaussian simulation. IEEE Signal Processing Letters, 22(11), 1950–1954.CrossRef Pham, T. D. (2015). Estimating parameters of optimal average and adaptive wiener filters for image restoration with sequential Gaussian simulation. IEEE Signal Processing Letters, 22(11), 1950–1954.CrossRef
29.
Zurück zum Zitat Adjed, F., Gardezi, S. J. S., Ababsa, F., Faye, I., & Dass, S. C. (2018). Fusion of structural and textural features for melanoma recognition. IET Computer Vision, 12(2), 185–195.CrossRef Adjed, F., Gardezi, S. J. S., Ababsa, F., Faye, I., & Dass, S. C. (2018). Fusion of structural and textural features for melanoma recognition. IET Computer Vision, 12(2), 185–195.CrossRef
30.
Zurück zum Zitat Gomez-Moreno, H., Maldonado-Bascon, S., Gil-Jimenez, P., & Lafuente-Arroyo, S. (2010). Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Transactions on Intelligent Transportation Systems, 11(4), 917–930.CrossRef Gomez-Moreno, H., Maldonado-Bascon, S., Gil-Jimenez, P., & Lafuente-Arroyo, S. (2010). Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Transactions on Intelligent Transportation Systems, 11(4), 917–930.CrossRef
31.
Zurück zum Zitat Al-Mohair, H. K., Mohamad-Saleh, J., & Azmin Suandi, S. (2015). Hybrid human skin detection using neural network and K-means clustering technique. Applied Soft Computing, 33(1), 337–347.CrossRef Al-Mohair, H. K., Mohamad-Saleh, J., & Azmin Suandi, S. (2015). Hybrid human skin detection using neural network and K-means clustering technique. Applied Soft Computing, 33(1), 337–347.CrossRef
32.
Zurück zum Zitat Tan, W. R., Chan, C. S., Pratheepan, Y., & Condell, J. (2012). A fusion approach for efficient human skin detection. IEEE Transactions on Industrial Informatics, 8(1), 138–147.CrossRef Tan, W. R., Chan, C. S., Pratheepan, Y., & Condell, J. (2012). A fusion approach for efficient human skin detection. IEEE Transactions on Industrial Informatics, 8(1), 138–147.CrossRef
33.
Zurück zum Zitat Jones, M. J., & Rehg, J. M. (2002). Statistical color models with application to skin detection. International Journal of Computer Vision, 46(1), 81–96.MATHCrossRef Jones, M. J., & Rehg, J. M. (2002). Statistical color models with application to skin detection. International Journal of Computer Vision, 46(1), 81–96.MATHCrossRef
Metadaten
Titel
An Automatic Threshold Segmentation and Mining Optimum Credential Features by Using HSV Model
verfasst von
A. Prabhu Chakkaravarthy
A. Chandrasekar
Publikationsdatum
01.06.2019
Verlag
3D Display Research Center
Erschienen in
3D Research / Ausgabe 2/2019
Elektronische ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-019-0229-8

Weitere Artikel der Ausgabe 2/2019

3D Research 2/2019 Zur Ausgabe