Skip to main content

2015 | OriginalPaper | Buchkapitel

An Efficient 64-Point IFFT Hardware Module Design

verfasst von : Danijela Efnusheva, Aristotel Tentov, Natasha Tagasovska

Erschienen in: New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the process of designing a 64-point IFFT hardware module, as a 2D structure of 8-point IFFT pipeline modules. The proposed 64-point IFFT module utilizes only two 8-point IFFT modules, which include minimal number of multiplications and additions, and as well provides parallel processing of eight symbols in each pipeline phase. This allows high throughput performances of the proposed 64-point IFFT module and chip area savings of its hardware implementation on Virtex 5 FPGA. The realized hardware design can be easily applied in a high-speed real-time system, such as OFDM-based communication system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. W. Smith, The scientist and engineer’s guide to digital signal processing. California: California technical publishing, 1997. S. W. Smith, The scientist and engineer’s guide to digital signal processing. California: California technical publishing, 1997.
2.
Zurück zum Zitat K. Adzha Bin Kadiran, “Design and implementation of OFDM transmitter and receiver on FPGA hardware”, M.S. thesis, Faculty of electrical engineering, Universiti teknologi Malaysia, Malaysia, 2005. K. Adzha Bin Kadiran, “Design and implementation of OFDM transmitter and receiver on FPGA hardware”, M.S. thesis, Faculty of electrical engineering, Universiti teknologi Malaysia, Malaysia, 2005.
3.
Zurück zum Zitat K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM”, IEEE journal of solid-state circuits, vol. 39, March 2004. K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM”, IEEE journal of solid-state circuits, vol. 39, March 2004.
4.
Zurück zum Zitat K. Maharatna, E. Grass and U. Jagdhold, “A Low-power 64-point FFT/IFFT architecture for wireless broadband communication”, in Proc. 7th Int’l Conf. on Mobile Multimedia Communication (MoMuC), Tokyo, Japan, 2000. K. Maharatna, E. Grass and U. Jagdhold, “A Low-power 64-point FFT/IFFT architecture for wireless broadband communication”, in Proc. 7th Int’l Conf. on Mobile Multimedia Communication (MoMuC), Tokyo, Japan, 2000.
5.
Zurück zum Zitat Chin-Teng Lin, Yuan-Chu Yu, and Lan-Da Van, “A Low-power 64-point FFT/IFFT design for IEEE 802.11a WLAN application”, IEEE International symposium on circuits and systems, Greece, 2006. Chin-Teng Lin, Yuan-Chu Yu, and Lan-Da Van, “A Low-power 64-point FFT/IFFT design for IEEE 802.11a WLAN application”, IEEE International symposium on circuits and systems, Greece, 2006.
6.
Zurück zum Zitat Joel J. Fúster, Karl S. Gugel, “Pipelined 64-point fast Fourier transform for programmable logic devices”, in Proc. International conference on advances in recent technologies in communication and computing, India, 2010. Joel J. Fúster, Karl S. Gugel, “Pipelined 64-point fast Fourier transform for programmable logic devices”, in Proc. International conference on advances in recent technologies in communication and computing, India, 2010.
7.
Zurück zum Zitat M. Lakkannavar, A. Desai, “Design and implementation of OFDM (Orthogonal Frequency Division Multiplexing) using VHDL and FPGA”, International journal of engineering and advanced technology (IJEAT), vol. 1, issue 6, August 2012. M. Lakkannavar, A. Desai, “Design and implementation of OFDM (Orthogonal Frequency Division Multiplexing) using VHDL and FPGA”, International journal of engineering and advanced technology (IJEAT), vol. 1, issue 6, August 2012.
8.
Zurück zum Zitat Y. Ouerhani, M. Jridi and A. Alfalou, “Implementation techniques of high-order FFT into low-cost FPGA”, in Proc. IEEE 54th International Midwest Symposium on Circuits and Systems, Korea, 2011. Y. Ouerhani, M. Jridi and A. Alfalou, “Implementation techniques of high-order FFT into low-cost FPGA”, in Proc. IEEE 54th International Midwest Symposium on Circuits and Systems, Korea, 2011.
9.
Zurück zum Zitat Unicore Systems, “Pipelined FFT/IFFT 64 points (Fast Fourier Transform)”, IP core Specification from OpenCores, 2010. Unicore Systems, “Pipelined FFT/IFFT 64 points (Fast Fourier Transform)”, IP core Specification from OpenCores, 2010.
10.
Zurück zum Zitat M. Bernhard, J. Speidel, “Implementation of an IFFT for an optical OFDM transmitter with 12.1 Gbit/s”, in Proc. ITG Symposium on photonic networks, Germany, 2010. M. Bernhard, J. Speidel, “Implementation of an IFFT for an optical OFDM transmitter with 12.1 Gbit/s”, in Proc. ITG Symposium on photonic networks, Germany, 2010.
11.
Zurück zum Zitat M. Arioua, S. Belkouch, M. Agdad and M. M’rabet Hassani, “VHDL implementation of an optimized 8-point FFT/IFFT processor in pipeline architecture for OFDM systems”, In proc. Multimedia computing and systems international conference, Morocco, 2011. M. Arioua, S. Belkouch, M. Agdad and M. M’rabet Hassani, “VHDL implementation of an optimized 8-point FFT/IFFT processor in pipeline architecture for OFDM systems”, In proc. Multimedia computing and systems international conference, Morocco, 2011.
12.
Zurück zum Zitat Tsu-Chin Fung, “FPGA design and implementation of a memory based mixed-radix 4/2 FFT processor”, M.S. thesis, Dept. of Electrical Eng., Tatung University, Tatung, July 2008. Tsu-Chin Fung, “FPGA design and implementation of a memory based mixed-radix 4/2 FFT processor”, M.S. thesis, Dept. of Electrical Eng., Tatung University, Tatung, July 2008.
13.
Zurück zum Zitat J. García1, J. A. Michell, G. Ruiz, A.l M. Burón, “FPGA realization of a split radix FFT processor”, in Proc. SPIE, Microtechnologies for the new millennium, vol. 6590, 2007, pp. 1–11. J. García1, J. A. Michell, G. Ruiz, A.l M. Burón, “FPGA realization of a split radix FFT processor”, in Proc. SPIE, Microtechnologies for the new millennium, vol. 6590, 2007, pp. 1–11.
14.
Zurück zum Zitat D. Ghosh, D. Debnath and A. Chakrabarti, “FPGA based implementation of FFT processor using different architectures”, International journal of advance innovations, thoughts & ideas, 2012. D. Ghosh, D. Debnath and A. Chakrabarti, “FPGA based implementation of FFT processor using different architectures”, International journal of advance innovations, thoughts & ideas, 2012.
15.
Zurück zum Zitat V. Sudheer N, V. Gopal B, “FPGA Implementation of 64 Point FFT processor”, International journal of innovative technology and exploring engineering, vol. 1, Issue 4, September 2012. V. Sudheer N, V. Gopal B, “FPGA Implementation of 64 Point FFT processor”, International journal of innovative technology and exploring engineering, vol. 1, Issue 4, September 2012.
16.
Zurück zum Zitat Chandan. M, S. L. Pinjare, C. Mohan Umapthy, “Optimised FFT design using constant co-efficient multiplier”, International journal of emerging technology and advanced engineering, 2012. Chandan. M, S. L. Pinjare, C. Mohan Umapthy, “Optimised FFT design using constant co-efficient multiplier”, International journal of emerging technology and advanced engineering, 2012.
17.
Zurück zum Zitat Richard E. Blahut, Fast Algorithms for Signal Processing, United Kingdom: Cambridge University Press, 2010. Richard E. Blahut, Fast Algorithms for Signal Processing, United Kingdom: Cambridge University Press, 2010.
18.
Zurück zum Zitat Shmuel Winograd, “On computing the Discrete Fourier Transform”, in Proc. Nat. Acad. Sci., USA, 1976. Shmuel Winograd, “On computing the Discrete Fourier Transform”, in Proc. Nat. Acad. Sci., USA, 1976.
19.
Zurück zum Zitat D. Ding, J. Lee and Y. Mortazavi, “A 0.18um VLSI technology based 64 points fast Fourier transform kernel”, Duo’s first VLSI Project, Univ. of Texas at Austin, May 2007. D. Ding, J. Lee and Y. Mortazavi, “A 0.18um VLSI technology based 64 points fast Fourier transform kernel”, Duo’s first VLSI Project, Univ. of Texas at Austin, May 2007.
20.
Zurück zum Zitat P. priya dukkipati, K N H Srinivas, “FPGA based variable - point FFT processor”, International journal of engineering research and applications, vol. 1, issue 3, 2001. P. priya dukkipati, K N H Srinivas, “FPGA based variable - point FFT processor”, International journal of engineering research and applications, vol. 1, issue 3, 2001.
Metadaten
Titel
An Efficient 64-Point IFFT Hardware Module Design
verfasst von
Danijela Efnusheva
Aristotel Tentov
Natasha Tagasovska
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-06764-3_59

Neuer Inhalt