Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2010

01.03.2010 | Research Paper

An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids

verfasst von: Hrishikesh E. Patel, T. Sundararajan, Sarit K. Das

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the reasons for the controversy on the thermal conductivity enhancement of nanofluids is the lack of extensive data over a wide range of parameters. In the present study, a comprehensive experimental dataset is obtained for thermal conductivity of nanofluids with variation in nanoparticle material, base liquid, particle size, particle volume fraction and suspension temperature. Transient hot wire (THW) equipment as well as Temperature Oscillation equipment are developed for the measurement of thermal conductivity of liquids. The measurements show that, in general, thermal conductivity values of all the nanofluids are higher than that of the equivalent macro-particle suspensions. Metallic nanofluids are found to give higher enhancements than that of oxide nanofluids. Particle size is found to have a tremendous impact on the thermal conductivity of nanofluids with enhancement in the thermal conductivity increasing almost inversely with reduction in the particle size. Increase in temperature significantly increases the thermal conductivity of a nanofluid. It is also observed that the thermal conductivity of nanoparticle suspensions is relatively higher at lower volume fractions, thereby giving a non-linear dependence on the particle volume fraction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Mater 55:549–552CrossRef Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Mater 55:549–552CrossRef
Zurück zum Zitat Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574CrossRef Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574CrossRef
Zurück zum Zitat Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRefADS Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720CrossRefADS
Zurück zum Zitat Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1(3):187–191CrossRef Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1(3):187–191CrossRef
Zurück zum Zitat Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311CrossRefADS Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311CrossRefADS
Zurück zum Zitat Hwang Y, Lee JK, Lee CH, Jung YM, Cheonga SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta 455:70–74CrossRef Hwang Y, Lee JK, Lee CH, Jung YM, Cheonga SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta 455:70–74CrossRef
Zurück zum Zitat Kim SH, Choi SR, Kim D (2007) Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. ASME J Heat Transf 129:298–307CrossRefMathSciNet Kim SH, Choi SR, Kim D (2007) Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. ASME J Heat Transf 129:298–307CrossRefMathSciNet
Zurück zum Zitat Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRef Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289CrossRef
Zurück zum Zitat Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314CrossRefADS Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314CrossRefADS
Zurück zum Zitat Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101:044312CrossRefADS Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101:044312CrossRefADS
Zurück zum Zitat Maxwell JC (1881) A treatise on electricity and magnetism, vol 1, 2nd edn. Clarendon Press, Oxford, UK Maxwell JC (1881) A treatise on electricity and magnetism, vol 1, 2nd edn. Clarendon Press, Oxford, UK
Zurück zum Zitat Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci 44:367–373CrossRef Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci 44:367–373CrossRef
Zurück zum Zitat Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568CrossRef Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568CrossRef
Zurück zum Zitat Patel HE, Das SK, Sundararajan T, Sreekumaran NA, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933CrossRefADS Patel HE, Das SK, Sundararajan T, Sreekumaran NA, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933CrossRefADS
Zurück zum Zitat Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99:084308CrossRefADS Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99:084308CrossRefADS
Zurück zum Zitat Venerus DC, Kabadi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310CrossRefADS Venerus DC, Kabadi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310CrossRefADS
Zurück zum Zitat Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480CrossRef Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480CrossRef
Zurück zum Zitat Xie H, Wang J, Xi T, Liu Y (2001) Study on the thermal conductivity of SiC nanofluids. J Chin Ceram Soc 29(4):361–364 Xie H, Wang J, Xi T, Liu Y (2001) Study on the thermal conductivity of SiC nanofluids. J Chin Ceram Soc 29(4):361–364
Zurück zum Zitat Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572CrossRefADS Xie HQ, Wang JC, Xi TG, Liu Y, Ai F, Wu QR (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572CrossRefADS
Zurück zum Zitat Xuan Y, Li Q (2000) Heat transfer enhancement of nano-fluids. Int J Heat Fluid Flow 21:58–64CrossRef Xuan Y, Li Q (2000) Heat transfer enhancement of nano-fluids. Int J Heat Fluid Flow 21:58–64CrossRef
Zurück zum Zitat Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett 89:083111CrossRefADS Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett 89:083111CrossRefADS
Zurück zum Zitat Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580CrossRef Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580CrossRef
Zurück zum Zitat Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599CrossRef Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599CrossRef
Zurück zum Zitat Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89:023123CrossRefADS Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89:023123CrossRefADS
Metadaten
Titel
An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids
verfasst von
Hrishikesh E. Patel
T. Sundararajan
Sarit K. Das
Publikationsdatum
01.03.2010
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2010
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9658-2

Weitere Artikel der Ausgabe 3/2010

Journal of Nanoparticle Research 3/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.