Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

An inequality for the gamma function via statistics and applications

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this paper is to establish an inequality for the gamma function, using a statistical method. Applications of the inequality are also given, including some estimates of π.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

1 Introduction and main result

Recently, there have been many papers about the ratio of gamma functions in the literature; see [19]. Some of the papers use statistical methods. Gurland [10] has given an inequality satisfied by the gamma function, using the so-called Cramér-Rao lower bound for the variance of unbiased estimators. Olkin [11] has given an extension of Gurland’s inequality. Gokhale [12] has given another inequality, which used an analogue of the Cramér-Rao lower bound derived by Rao [13]. Rao gave a stronger version of Wallis’ formula [14]. We, inspired by the above papers, give an inequality concerning the gamma function. Applications of the inequality are also given. We first recall some definitions, notation, and well-known results in statistical theory, which will be used in this paper.
A normal distribution \(N(\mu,\sigma^{2})\) is described by the probability density function,
$$ p(x)=\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}},\quad x\in \mathbb{R}. $$
(1.1)
When a random variable X is distributed normally with mean μ and variance \(\sigma^{2}\), we write \(X\sim N(\mu,\sigma^{2})\).
Suppose that \(x_{1},x_{2},\ldots,x_{n}\) is a sample from a population with a distribution function \(F_{\theta}(x)\) (\(\theta\in\Omega\)). Let \(\hat{g}=\hat{g}(x_{1},x_{2},\ldots,x_{n})\) be an estimator of a parametric function \(g(\theta)\). If \(E(\hat{g})=g(\theta)\) for all values of parameter \(\theta\in\Omega\), we call \(\hat{g}\) an unbiased estimator of \(g(\theta)\).
Consider an estimation of \(g(\theta)\) based on a sample \(x_{1},x_{2},\ldots,x_{n}\) from some member of a family of distribution functions \(F_{\theta}(x)\), \(\theta\in\Omega\), where Ω is the parameter space. An unbiased estimator \(\hat{g}(x_{1},x_{2},\ldots,x_{n})\) of \(g(\theta)\) is UMVUE, if \(\forall\theta\in\Omega\),
$$ \operatorname{var}_{\theta}(\hat{g}(x_{1},x_{2}, \ldots,x_{n})\leq \operatorname{var}_{\theta}\bigl(\tilde{g}(x_{1},x_{2}, \ldots,x_{n})\bigr), $$
(1.2)
for any other unbiased estimator \(\tilde{g}\).
Euler’s gamma function Γ is defined for \(x>0\) by
$$ \Gamma(x)=\int_{0}^{\infty}t^{x-1}e^{-t}\,dt. $$
(1.3)
If \(x_{1},x_{2},\ldots,x_{n}\) is a sample from a population with distribution \(N(\mu,\sigma^{2})\), then
$$ \hat{\sigma}=\frac{\Gamma (\frac {n}{2} )}{ \sqrt{2}\Gamma (\frac{n+1}{2} )}\sqrt{\sum _{i=1}^{n}x_{i}^{2}} $$
(1.4)
is the UMVUE of σ.
The main result of this paper is the following theorem.
Theorem 1.1
Suppose that \(n_{k}\) (\(k=1,2,\ldots,m\)) are nonnegative integers and \(\lambda_{k}\in\mathbb{R}\), such that \(0\leq\lambda_{k}\leq1\), \(\sum_{k=1}^{m}\lambda_{k}=1\). Then we have
$$ \frac{n\Gamma^{2}(\frac{n}{2})}{2\Gamma^{2}(\frac{n+1}{2})}-1\leq\sum_{k=1}^{m} \lambda_{k}^{2} \biggl(\frac{n_{k}\Gamma^{2}(\frac{n_{k}}{2})}{ 2\Gamma^{2}(\frac{n_{k}+1}{2})}-1 \biggr), $$
(1.5)
where \(n=\sum_{k=1}^{m}n_{k}\).

2 Proof of the main result

In this section, we use statistical methods to prove the theorem.
Proof
Let \(x_{11}, x_{12}, \ldots, x_{1n_{1}}, x_{21}, x_{22}, \ldots, x_{2n_{2}}, x_{m1}, x_{m2}, \ldots, x_{mn_{m}}\) be a random sample from a normal distribution \(X\sim N(\mu,\sigma^{2})\). From (1.4), it is known that
$$ \hat{\sigma}=\frac{\Gamma (\frac {n}{2} )}{ \sqrt{2}\Gamma (\frac{n+1}{2} )}\sqrt{\sum _{i=1}^{m}\sum_{j=1}^{n_{i}}x_{ij}^{2}} $$
(2.1)
is the UMVUE of σ, where \(n=\sum_{i=1}^{m}n_{i}\).
For any \(x_{k1}, x_{k2}, \ldots, x_{kn_{k}}\), \(1\leq k\leq m\)
$$ \frac{\Gamma(\frac{n_{k}}{2})}{ \sqrt{2}\Gamma(\frac{n_{k}+1}{2})}\sqrt{\sum_{k=1}^{n_{k}}x_{ki}^{2}} $$
(2.2)
is an unbiased estimate of σ.
Using (2.2), we construct a new unbiased estimate of σ, i.e.,
$$ \hat{\sigma}_{1}=\sum_{k=1}^{m} \frac{\lambda_{k}\Gamma(\frac{n_{k}}{2})}{ \sqrt{2}\Gamma(\frac{n_{k}+1}{2})}\sqrt{\sum_{k=1}^{n_{k}}x_{ki}^{2}}, $$
(2.3)
where \(0\leq\lambda_{k}\leq1\), \(\sum_{k=1}^{m}\lambda_{k}=1\).
Due to the definition of the UMVUE, the following inequality holds:
$$ \operatorname{Var}\hat{\sigma}_{1}\geq \operatorname{Var} \hat{\sigma}. $$
(2.4)
After some simple computations, we can obtain
$$ D(\hat{\sigma})= \biggl(\frac{n\Gamma^{2}(\frac{n}{2})}{2\Gamma^{2}(\frac {n+1}{2})}-1 \biggr) \sigma^{2} $$
(2.5)
and
$$ D(\hat{\sigma}_{1})=\sum_{k=1}^{m} \lambda_{k}^{2} \biggl(\frac {n_{k}\Gamma^{2}(\frac{n_{k}}{2})}{2\Gamma^{2}(\frac{n_{k}+1}{2})}-1 \biggr) \sigma^{2}. $$
(2.6)
Substituting (2.5) and (2.6) into (2.4) gives (1.5). Thus, we complete the proof. □

3 Some applications of Theorem 1.1

In this section, we show some applications of the main result of this paper. First, we give the following inequalities, which include the gamma function and a trigonometric function.
Theorem 3.1
Suppose n is any positive integer, and \(\theta\in\mathbb{R}\), then
$$ \frac{\Gamma^{2}(2n+1)}{\Gamma^{2}(2n+\frac{1}{2})}\leq n\sin^{2}\theta+\bigl(2- \sin^{2}\theta\bigr)\frac{\Gamma^{2}(n+1)}{\Gamma ^{2}(n+\frac{1}{2})}. $$
(3.1)
Proof
Letting \(m=2\) and \(\lambda_{1}=\sin^{2}\theta\), \(\lambda _{2}=\cos^{2}\theta\) in (1.5) gives
$$\begin{aligned}& \frac{(n_{1}+n_{2})\Gamma^{2}(\frac{n_{1}+n_{2}}{2})}{2\Gamma ^{2}(\frac{n_{1}+n_{2}+1}{2})}-1 \\& \quad \leq\sin^{4}\theta \biggl(\frac{n_{1}\Gamma^{2}(\frac{n_{1}}{2})}{2\Gamma ^{2}(\frac{n_{1}+1}{2})}-1 \biggr)+ \cos^{4}\theta \biggl(\frac{n_{2}\Gamma^{2}(\frac{n_{2}}{2})}{2\Gamma ^{2}(\frac{n_{2}+1}{2})}-1 \biggr). \end{aligned}$$
(3.2)
Letting \(n_{1}=n_{2}=a\) in (3.2), one obtains
$$ \frac{\Gamma^{2}(2a+1)}{\Gamma^{2}(2a+\frac{1}{2})}- 2\bigl(\sin^{4} \theta+\cos^{4}\theta\bigr)\frac{\Gamma^{2}(a+1)}{\Gamma^{2}(a+\frac {1}{2})}\leq2a \bigl(1- \sin^{4}\theta-\cos^{4}\theta \bigr). $$
(3.3)
Employing the following trigonometric formula:
$$ \sin^{4}\theta+\cos^{4}\theta=1- \frac{\sin^{2}2\theta}{2}, $$
(3.4)
(3.3) becomes
$$ \frac{\Gamma^{2}(2a+1)}{\Gamma^{2}(2a+\frac{1}{2})}\leq a\sin^{2}(2\theta)+\bigl(2- \sin^{2}(2\theta)\bigr)\frac{\Gamma^{2}(a+1)}{\Gamma ^{2}(a+\frac{1}{2})}. $$
(3.5)
Replacing 2θ by θ and a by n, we obtain (3.1). Thus, we finish the proof. □
In [15], Gurland gave the following estimator of π:
$$ \frac{4n+3}{ (2n+1 )^{2}} \biggl(\frac{ (2n )!!}{ (2n-1 )!!} \biggr)^{2}< \pi. $$
(3.6)
Mortici [1] gave the refinements of Gurland’s formula for π:
$$ \biggl(\frac{n+\frac{1}{4}}{n^{2}+\frac{1}{2}n+\frac{3}{32}}+\frac {9}{2\text{,}048n^{5}}-\frac{45}{8\text{,}192n^{6}} \biggr) \biggl(\frac{ (2n )!!}{ (2n-1 )!!} \biggr)^{2}< \pi. $$
(3.7)
Using (3.1), we can get the following similar result.
Corollary 3.2
Suppose n is any nonnegative integer, then
$$ \frac{1}{n} \biggl[ \biggl(\frac{(4n)!!}{(4n-1)!!} \biggr)^{2}- \biggl(\frac {(2n)!!}{(2n-1)!!} \biggr)^{2} \biggr]< \pi. $$
(3.8)
Proof
Letting \(\theta=\frac{\pi}{2}\) in (3.1) gives
$$ \frac{\Gamma^{2}(2n+1)}{\Gamma^{2}(2n+\frac{1}{2})}\leq n+\frac{\Gamma^{2}(n+1)}{\Gamma^{2}(n+\frac{1}{2})}. $$
(3.9)
We have
$$ \frac{ (2q )!!}{ (2q-1 )!!}=\sqrt{\pi}\frac{\Gamma (q+1 )}{\Gamma (q+\frac{1}{2} )}. $$
(3.10)
See, e.g., [1]. So
$$ \frac{1}{n} \biggl[ \biggl(\frac{(4n)!!}{(4n-1)!!} \biggr)^{2}- \biggl(\frac {(2n)!!}{(2n-1)!!} \biggr)^{2} \biggr]\leq \pi. $$
(3.11)
Because the equality in (3.11) cannot hold, we get (3.8). □
Now we give an inequality involving combinational coefficients \({n\choose m}\), defined by
$${n\choose m }=\frac{n!}{m!(n-m)!}. $$
Theorem 3.3
Suppose m, w are any positive integers, then
$$\begin{aligned}& \frac{1}{m} \biggl[\frac{(2mw)!!}{(2mw-1)!!} \biggr]^{2} +\frac{1}{2^{2m}} \biggl[w\pi- \biggl(\frac{ (2w )!!}{ (2w-1 )!!} \biggr)^{2} \biggr] \left[{2m\choose m}-1 \right] \\& \quad\leq w\pi. \end{aligned}$$
(3.12)
Proof
Since
$$ \sum_{k=1}^{m}{m\choose k} \frac{1}{2^{m}}=1. $$
(3.13)
Letting \(n_{k}=2w\), \(\lambda_{k}={m\choose k}\frac{1}{2^{m}}\) in (1.5), then \(n=\sum_{k=1}^{m}n_{k}=2mw\). We get
$$ mw\frac{\Gamma^{2}(mw)}{\Gamma^{2}(mw+\frac{1}{2})}-1\leq\sum_{k=1}^{m} \biggl({m\choose k}\frac{1}{2^{m}} \biggr)^{2} \biggl(w \frac{\Gamma ^{2}(w)}{\Gamma^{2}(w+\frac{1}{2})}-1 \biggr). $$
(3.14)
Using the inequality of (3.10) and after some simple derivations, we have
$$\begin{aligned}& \Biggl[\frac{1}{m} \biggl(\frac{(2mw)!!}{(2mw-1)!!} \biggr)^{2} -\sum_{k=1}^{m} \biggl({m\choose k}\frac{(2w)!!}{(2w-1)!!}\frac{1}{2^{m}} \biggr)^{2} \Biggr]\frac{1}{\pi} \\& \quad\leq w \Biggl[1-\sum_{k=1}^{m} \biggl({m\choose k}\frac{1}{2^{m}} \biggr)^{2} \Biggr]. \end{aligned}$$
(3.15)
Substituting
$$ \sum_{k=0}^{m}{m\choose k}^{2}={2m\choose m} $$
(3.16)
into (3.15) one obtains (3.12). □
The special case \(w=1\) of (3.12) results in
$$ \frac{1}{m} \biggl[\frac{(2m)!!}{(2m-1)!!} \biggr]^{2} +\frac{\pi-4}{2^{2m}} \left[{2m\choose m}-1 \right]\leq\pi. $$
(3.17)
Finally, we give the following double inequality for π.
Theorem 3.4
Let p, d are positive integers, then
$$\begin{aligned}& \frac{1}{2pd} \biggl[ \biggl(\frac{ (4pd+2p )!!}{ (4pd+2p-1 )!!} \biggr)^{2}- \biggl(\frac{ (2p )!!}{ (2p-1 )!!} \biggr)^{2} \biggr] \\& \quad< \pi < \frac{4d}{ (2p+1 ) [ (2d+1 )^{2} (\frac { (4pd+2p+2d-1 )!!}{ (4pd+2p+2d )!!} )^{2}- (\frac{(2p-1)!!}{(2p)!!} )^{2} ]}. \end{aligned}$$
(3.18)
Proof
Letting \(m=2d+1\) and \(n_{1}=n_{2}=\cdots=n_{m}=2p+1\) in (1.5) gives
$$\begin{aligned}& \frac{(2p+1)(2d+1)}{2}\frac{\Gamma^{2}(2pd+p+d+\frac{1}{2})}{\Gamma ^{2}(2pd+p+d+1)}-1 \\& \quad\leq\sum_{k=1}^{2d+1} \lambda_{k}^{2} \biggl[\frac{2p+1}{2}\frac {\Gamma^{2}(\frac{2p+1}{2})}{ \Gamma^{2}(\frac{2p+2}{2})}-1 \biggr]. \end{aligned}$$
(3.19)
Using (3.10), the inequality (3.19) can be written in the equivalent form
$$ \pi< \frac{2 (1-\sum_{k=1}^{2d+1}\lambda_{k}^{2} )}{(2p+1) [(2d+1) (\frac{(4pd+2p+2d-1)!!}{(4pd+2p+2d)!!} )^{2}-\sum_{k=1}^{2d+1}\lambda_{k}^{2} (\frac{(2p-1)!!}{(2p)!!} )^{2} ]}. $$
(3.20)
Letting \(\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}=\frac{1}{2d+1}\) in (3.20) gives
$$ \pi< \frac{4d}{(2p+1) [(2d+1)^{2} (\frac {(4pd+2p+2d-1)!!}{(4pd+2p+2d)!!} )^{2}- (\frac{(2p-1)!!}{(2p)!!} )^{2} ]}. $$
(3.21)
Similarly, letting \(m=2d+1\), \(n_{1}=n_{2}=\cdots=n_{m}=2p\), and \(\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}=\frac{1}{2d+1}\) in (1.5), one can obtain
$$ \frac{1}{2pd} \biggl[ \biggl(\frac{(4pd+2p)!!}{(4pd+2p-1)!!} \biggr)^{2}- \biggl(\frac{(2p)!!}{(2p-1)!!} \biggr)^{2} \biggr]< \pi. $$
(3.22)
Then the inequality of (3.18) is the combination of the inequality (3.21) and the inequality (3.22). □
The special case \(p=1\) of (3.18) results in
$$ \frac{1}{2d} \biggl[ \biggl(\frac{ (4d+2 )!!}{ (4d+1 )!!} \biggr)^{2}-4 \biggr]< \pi < \frac{4d}{3 [ (2d+1 )^{2} (\frac{ (6d+1 )!!}{ (6d+2 )!!} )^{2}-\frac{1}{4} ]}. $$
(3.23)

Acknowledgements

The authors would like to thank two anonymous referees for many helpful comments and suggestions. We acknowledge support by the National Natural Science Foundation (grant 11271057) of China.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.
Literatur
2.
Zurück zum Zitat Mortici, C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52(1), 425-433 (2010) MATHMathSciNetCrossRef Mortici, C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52(1), 425-433 (2010) MATHMathSciNetCrossRef
3.
Zurück zum Zitat Mortici, C: Sharp inequalities and complete monotonicity for the Wallis ratio. Bull. Belg. Math. Soc. Simon Stevin 17(5), 929-936 (2010) MATHMathSciNet Mortici, C: Sharp inequalities and complete monotonicity for the Wallis ratio. Bull. Belg. Math. Soc. Simon Stevin 17(5), 929-936 (2010) MATHMathSciNet
4.
Zurück zum Zitat Mortici, C, Qi, F: Some best approximation formulas and inequalities for the Wallis ratio. Appl. Math. Comput. 253, 363-368 (2015) MathSciNetCrossRef Mortici, C, Qi, F: Some best approximation formulas and inequalities for the Wallis ratio. Appl. Math. Comput. 253, 363-368 (2015) MathSciNetCrossRef
5.
Zurück zum Zitat Mortici, C, Lu, D, Cristea, V: Complete monotonic functions and inequalities associated to some ratio of gamma function. Appl. Math. Comput. 240, 168-174 (2014) MathSciNetCrossRef Mortici, C, Lu, D, Cristea, V: Complete monotonic functions and inequalities associated to some ratio of gamma function. Appl. Math. Comput. 240, 168-174 (2014) MathSciNetCrossRef
6.
Zurück zum Zitat Qi, F: Bounds for the ratio of two gamma functions: from Gautschi’s and Kershaw’s inequalities to complete monotonicity. Turk. J. Anal. Number Theory 2(5), 152-164 (2014). doi:10.12691/tjant-2-5-1 CrossRef Qi, F: Bounds for the ratio of two gamma functions: from Gautschi’s and Kershaw’s inequalities to complete monotonicity. Turk. J. Anal. Number Theory 2(5), 152-164 (2014). doi:10.​12691/​tjant-2-5-1 CrossRef
7.
8.
Zurück zum Zitat Qi, F, Luo, Q-M: Bounds for the ratio of two gamma functions - from Wendel’s and related inequalities to logarithmically completely monotonic functions. Banach J. Math. Anal. 6(2), 132-158 (2012) MATHMathSciNetCrossRef Qi, F, Luo, Q-M: Bounds for the ratio of two gamma functions - from Wendel’s and related inequalities to logarithmically completely monotonic functions. Banach J. Math. Anal. 6(2), 132-158 (2012) MATHMathSciNetCrossRef
10.
Zurück zum Zitat Gurland, J: An inequality satisfied by the gamma function. Skand. Aktuarietidskr. 1956, 171-172 (1956) MathSciNet Gurland, J: An inequality satisfied by the gamma function. Skand. Aktuarietidskr. 1956, 171-172 (1956) MathSciNet
11.
Zurück zum Zitat Olkin, I: An inequality satisfied by the gamma function. Skand. Aktuarietidskr. 1959, 37-39 (1959) MathSciNet Olkin, I: An inequality satisfied by the gamma function. Skand. Aktuarietidskr. 1959, 37-39 (1959) MathSciNet
12.
Zurück zum Zitat Gokhale, DV: On an inequality for gamma functions. Skand. Aktuarietidskr. 1962, 213-215 (1962) MathSciNet Gokhale, DV: On an inequality for gamma functions. Skand. Aktuarietidskr. 1962, 213-215 (1962) MathSciNet
13.
Zurück zum Zitat Rao, BR: On an analogue of Cramer-Rao inequality. Skand. Aktuarietidskr. 1959, 213-215 (1959) Rao, BR: On an analogue of Cramer-Rao inequality. Skand. Aktuarietidskr. 1959, 213-215 (1959)
14.
Metadaten
Titel
An inequality for the gamma function via statistics and applications
Publikationsdatum
01.12.2015
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0705-5

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe