Skip to main content
Erschienen in: Measurement Techniques 6/2019

16.11.2019

An Optical Method of Monitoring the State of Flowing Media with Low Transparency That Contain Large Inclusions

verfasst von: V. V. Davydov, N. M. Grebenikova, K. Ya. Smirnov

Erschienen in: Measurement Techniques | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An optical method of monitoring the state of flowing media with low transparency that contain large inclusions based on the phenomenon of refraction is considered. A construction of a laboratory mock-up of a refractometer is implemented for practical realization of the method. A prism in a new design in the form of a trapezoid with conical tips present in the optical part of the refractometer is designed and fabricated. Features of the process of monitoring the state of a flowing medium from the shift of the light–shadow boundary are described. Results of experimental investigations of different media performed on a mock-up of the refractometer are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Popovac and K. Hanjalic, “Compound wall treatment for RANS computation of complex turbulent flows and heat transfer,” Flow Turbul. Combust., 78, No. 2, 177–184 (2007).CrossRef M. Popovac and K. Hanjalic, “Compound wall treatment for RANS computation of complex turbulent flows and heat transfer,” Flow Turbul. Combust., 78, No. 2, 177–184 (2007).CrossRef
2.
Zurück zum Zitat Zh. A. Daev, “Method of measuring a pulsating flow of liquid,” Izmer. Tekhn., No. 3, 29–31 (2018). Zh. A. Daev, “Method of measuring a pulsating flow of liquid,” Izmer. Tekhn., No. 3, 29–31 (2018).
3.
Zurück zum Zitat V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, “Small-sized precision nuclear-magnetic flowmeter for measurement of rapidly varying flows of liquid,” Izmer. Tekhn., No. 3, 48–51 (2015). V. V. Davydov, V. I. Dudkin, and A. Yu. Karseev, “Small-sized precision nuclear-magnetic flowmeter for measurement of rapidly varying flows of liquid,” Izmer. Tekhn., No. 3, 48–51 (2015).
4.
Zurück zum Zitat S. V. D’yachenko, I. S. Kondrashkova, and A. I. Zhernovoy, “A study of sedimentation of ferromagnetic nanoparticles in a magnetic liquid by means of nuclear magnetic resonance,” Zh. Tekh. Fiz., 87, Iss. 10, 1596–1598 (2017). S. V. D’yachenko, I. S. Kondrashkova, and A. I. Zhernovoy, “A study of sedimentation of ferromagnetic nanoparticles in a magnetic liquid by means of nuclear magnetic resonance,” Zh. Tekh. Fiz., 87, Iss. 10, 1596–1598 (2017).
5.
Zurück zum Zitat V. V. Davydov, “Nuclear magnetic spectrometer for investigation of flows of liquid media,” Izmer. Tekhn., No. 11, 46–51 (2016). V. V. Davydov, “Nuclear magnetic spectrometer for investigation of flows of liquid media,” Izmer. Tekhn., No. 11, 46–51 (2016).
6.
Zurück zum Zitat M. A. Karabegov, “Metrological characteristics of total internal reflection refractometers,” Izmer. Tekhn., No. 4, 50–54 (2004). M. A. Karabegov, “Metrological characteristics of total internal reflection refractometers,” Izmer. Tekhn., No. 4, 50–54 (2004).
7.
Zurück zum Zitat M. A. Karabegov, “Automatic refractometers with difference prism for monitoring production processes,” Izmer. Tekhn., No. 6, 31–36 (2007). M. A. Karabegov, “Automatic refractometers with difference prism for monitoring production processes,” Izmer. Tekhn., No. 6, 31–36 (2007).
8.
Zurück zum Zitat N. P. Belov, S. N. Lapshov, A. S. Sherstobitova, and A. D. Yas’kov, “Optical properties of solutions of sulfate liquors and refractometric means of monitoring concentrations of dry residue in the production of cellulose,” Zh. Prikl. Spektrosk., 79, No. 3, 514–516 (2012). N. P. Belov, S. N. Lapshov, A. S. Sherstobitova, and A. D. Yas’kov, “Optical properties of solutions of sulfate liquors and refractometric means of monitoring concentrations of dry residue in the production of cellulose,” Zh. Prikl. Spektrosk., 79, No. 3, 514–516 (2012).
9.
Zurück zum Zitat M. A. Karabegov, Yu. I. Komarkov, and S. A. Khurshudyan, “Influence of optical density of a liquid on the error of differential refractometer,” Izmer. Tekhn., No. 3, 64–66 (1981). M. A. Karabegov, Yu. I. Komarkov, and S. A. Khurshudyan, “Influence of optical density of a liquid on the error of differential refractometer,” Izmer. Tekhn., No. 3, 64–66 (1981).
10.
Zurück zum Zitat Yu. I. Neronov and N. N. Seregin, “Development and investigation of pulsed magnetic induction meter based on nuclear resonance for the range of strong magnetic fields,” Izmer. Tekhn., No. 8, 46–48 (2017). Yu. I. Neronov and N. N. Seregin, “Development and investigation of pulsed magnetic induction meter based on nuclear resonance for the range of strong magnetic fields,” Izmer. Tekhn., No. 8, 46–48 (2017).
11.
Zurück zum Zitat V. A. Zubov and B. S. Rinkevicius, “Optical methods of investigating flows,” Kvant. Elektron., 24, No. 12, 1161–1163 (1997). V. A. Zubov and B. S. Rinkevicius, “Optical methods of investigating flows,” Kvant. Elektron., 24, No. 12, 1161–1163 (1997).
12.
Zurück zum Zitat V. V. Davydov, V. I. Dudkin, A. Yu. Karseev, and V. A. Vologdin, “Features in the use of the method of nuclear-magnetic spectroscopy for investigation of flows of liquid media,” Zh. Prikl. Spektrosk., 82, No. 6, 898–902 (2015). V. V. Davydov, V. I. Dudkin, A. Yu. Karseev, and V. A. Vologdin, “Features in the use of the method of nuclear-magnetic spectroscopy for investigation of flows of liquid media,” Zh. Prikl. Spektrosk., 82, No. 6, 898–902 (2015).
13.
Zurück zum Zitat Yu. V. Mishchenko, “Fiber-optic interference refractometer for investigating aqueous solutions,” Izmer. Tekhn., No. 12, 18–22 (1998). Yu. V. Mishchenko, “Fiber-optic interference refractometer for investigating aqueous solutions,” Izmer. Tekhn., No. 12, 18–22 (1998).
14.
Zurück zum Zitat Yu. V. Mishchenko, “Method of refractometric monitoring of liquids in production plants,” Izmer. Tekhn., No. 12, 25–30 (2007). Yu. V. Mishchenko, “Method of refractometric monitoring of liquids in production plants,” Izmer. Tekhn., No. 12, 25–30 (2007).
15.
Zurück zum Zitat V. L. Shur, A. S. Naydenov, A. Ya. Lukin, and G. I. Leybengard, “Liquid autocollimating refractometer,” Izmer. Tekhn., No. 8, 50–53 (2006). V. L. Shur, A. S. Naydenov, A. Ya. Lukin, and G. I. Leybengard, “Liquid autocollimating refractometer,” Izmer. Tekhn., No. 8, 50–53 (2006).
16.
Zurück zum Zitat G. I. Leybengard, A. S. Naydenov, and V. L. Shur, “Liquid laser interference refractometer for measurement of the concentrations of solutions,” Izmer. Tekhn., No. 12, 53–58 (2004). G. I. Leybengard, A. S. Naydenov, and V. L. Shur, “Liquid laser interference refractometer for measurement of the concentrations of solutions,” Izmer. Tekhn., No. 12, 53–58 (2004).
17.
Zurück zum Zitat Yu. V. Mishchenko, “Methods of recording interference for interference refractometers,” Izmer. Tekhn., No. 5, 20–26 (1995). Yu. V. Mishchenko, “Methods of recording interference for interference refractometers,” Izmer. Tekhn., No. 5, 20–26 (1995).
18.
Zurück zum Zitat K. A. Akmarov, N. P. Belov, Yu. Yu. Smirnov, et al., “Laboratory spectrophotometer for the visible region of the spectrum,” Nauch.-Tekhn. Vest. Inform. Tekhnol., Mekh. Opt., 13, No. 5, 39–44 (2013). K. A. Akmarov, N. P. Belov, Yu. Yu. Smirnov, et al., “Laboratory spectrophotometer for the visible region of the spectrum,” Nauch.-Tekhn. Vest. Inform. Tekhnol., Mekh. Opt., 13, No. 5, 39–44 (2013).
19.
Zurück zum Zitat N. P. Belov, S. N. Lapshov, S. N. Patyaev, et al., “Temperature dependence of index of refraction of aqueous solutions of ethylene glycol and propylene glycol,” Nauch.-Tekhn. Vest. Inform. Tekhnol., Mekh. Opt., 12, No. 2, 138–139 (2012). N. P. Belov, S. N. Lapshov, S. N. Patyaev, et al., “Temperature dependence of index of refraction of aqueous solutions of ethylene glycol and propylene glycol,” Nauch.-Tekhn. Vest. Inform. Tekhnol., Mekh. Opt., 12, No. 2, 138–139 (2012).
20.
Zurück zum Zitat V. M. Zolotarev, V. E. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media, Lan’, St. Petersburg (2008). V. M. Zolotarev, V. E. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media, Lan’, St. Petersburg (2008).
Metadaten
Titel
An Optical Method of Monitoring the State of Flowing Media with Low Transparency That Contain Large Inclusions
verfasst von
V. V. Davydov
N. M. Grebenikova
K. Ya. Smirnov
Publikationsdatum
16.11.2019
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 6/2019
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-019-01655-5

Weitere Artikel der Ausgabe 6/2019

Measurement Techniques 6/2019 Zur Ausgabe