Skip to main content

2019 | OriginalPaper | Buchkapitel

Analyzing Energy Requirements of Meta-Differential Evolution for Future Wearable Medical Devices

verfasst von : Tomas Koutny, David Siroky

Erschienen in: World Congress on Medical Physics and Biomedical Engineering 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in clinical engineering include development of physiological models to deliver optimized healthcare. Physiological model comprises a number of equations to relate biomedical signals. Each equation contains a set of coefficients. Determining the coefficients is a complex task as the models are non-linear. Therefore, development of the models must be accompanied by a development of methods to determine model coefficients. With the advent of wearable medical devices, we have to consider energy requirements of the models and the methods. Considering an illustrative case of type-1 diabetes mellitus patients, we already demonstrated that Meta-Differential Evolution outperforms analytical methods, when determining coefficients of glucose dynamics. In this paper, we analyze convergence of the Meta-Differential Evolution, running time and associated power consumption on a single board computer with a system-on-a-chip—Cortex-A8 AM335x. Based on the analysis, we recommend splitting the process of determining the coefficients into two phases. First phase determines the initial, per-patient optimized coefficients. Second phase is an energetically efficient update of these coefficients with new, continuously measured signal of the patient. Meta-Differential Evolution searches for optimal coefficients by evolving a number of generations of candidate coefficients, using a number of evolutionary strategies. We demonstrate that the proposed approach significantly reduces the number of candidate coefficients to evaluate, while achieving the desired accuracy. This positively reflects in the lifetime of wearable device’s battery. Specifically, calculating coefficient’s update took 0.05 Ws only. It shows the feasibility of using Meta-Differential Evolution with its improved accuracy for blood glucose calculations in a wearable device.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koutny, T.: Using meta-differential evolution to enhance a calculation of a continuous blood glucose level. Comput Methods Programs Biomed 133, 45–54 (2016). Koutny, T.: Using meta-differential evolution to enhance a calculation of a continuous blood glucose level. Comput Methods Programs Biomed 133, 45–54 (2016).
2.
Zurück zum Zitat Choi, J., Jung, B., Choi, Y., Son, S.: An adaptive and integrated low-power framework for multicore mobile computing. Mobile Information Systems 2017 (2017). Choi, J., Jung, B., Choi, Y., Son, S.: An adaptive and integrated low-power framework for multicore mobile computing. Mobile Information Systems 2017 (2017).
3.
Zurück zum Zitat Tuominen, J., Lehtonen, E., Tadi, M.J., Koskinen, J., Pankaala, M., Koivisto, T.: A miniaturized low power biomedical sensor node for clinical research and long term monitoring of cardiovascular signals. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017). Tuominen, J., Lehtonen, E., Tadi, M.J., Koskinen, J., Pankaala, M., Koivisto, T.: A miniaturized low power biomedical sensor node for clinical research and long term monitoring of cardiovascular signals. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017).
4.
Zurück zum Zitat Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro, L., Kawsar, F.: Deepx: A software accelerator for low-power deep learning inference on mobile devices. In: 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–12. IEEE (2016). Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro, L., Kawsar, F.: Deepx: A software accelerator for low-power deep learning inference on mobile devices. In: 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–12. IEEE (2016).
5.
Zurück zum Zitat De Falco, I., Della Cioppa, A., Koutny, T., Scafuri, U., Tarantino, E., Krcma, M.: An evolutionary approach for estimating the blood glucose by exploiting interstitial glucose measurements. In: BIOSTEC 2018. Springer (2018). De Falco, I., Della Cioppa, A., Koutny, T., Scafuri, U., Tarantino, E., Krcma, M.: An evolutionary approach for estimating the blood glucose by exploiting interstitial glucose measurements. In: BIOSTEC 2018. Springer (2018).
6.
Zurück zum Zitat Longo, D., Fauci, A., Kasper, D., Hauser, S., Jameson, J., Loscalzo, J.: Harrison’s Principles of Internal Medicine: Volumes 1 and 2, 18th Edition, 18 edn. McGrawHill Professional (2011). Longo, D., Fauci, A., Kasper, D., Hauser, S., Jameson, J., Loscalzo, J.: Harrison’s Principles of Internal Medicine: Volumes 1 and 2, 18th Edition, 18 edn. McGrawHill Professional (2011).
7.
Zurück zum Zitat Thabit, H., Leelarathna, L., Wilinska, M.E., Elleri, D., Allen, J.M., Lubina-Solomon, A., Walkinshaw, E., Stadler, M., Choudhary, P., Mader, J.K., Dellweg, S., Benesch, C., Pieber, T.R., Arnolds, S., Heller, S.R., Amiel, S.A., Dunger, D., Evans, M.L., Hovorka, R.: Accuracy of Continuous Glucose Monitoring During Three Closed-Loop Home Studies Under Free-Living Conditions. Diabetes Technol. Ther. 17(11), 801–807 (2015). Thabit, H., Leelarathna, L., Wilinska, M.E., Elleri, D., Allen, J.M., Lubina-Solomon, A., Walkinshaw, E., Stadler, M., Choudhary, P., Mader, J.K., Dellweg, S., Benesch, C., Pieber, T.R., Arnolds, S., Heller, S.R., Amiel, S.A., Dunger, D., Evans, M.L., Hovorka, R.: Accuracy of Continuous Glucose Monitoring During Three Closed-Loop Home Studies Under Free-Living Conditions. Diabetes Technol. Ther. 17(11), 801–807 (2015).
8.
Zurück zum Zitat Koutny, T.: Prediction of interstitial glucose level. IEEE Trans Inf Technol Biomed16(1), 136–142 (2012). Koutny, T.: Prediction of interstitial glucose level. IEEE Trans Inf Technol Biomed16(1), 136–142 (2012).
9.
Zurück zum Zitat Koutny, T.: Blood glucose level reconstruction as a function of transcapillary glucose transport. Comput. Biol. Med. 53, 171–178 (2014). Koutny, T.: Blood glucose level reconstruction as a function of transcapillary glucose transport. Comput. Biol. Med. 53, 171–178 (2014).
10.
Zurück zum Zitat Koutny, T.: Crosswalk–a time-ordered metric. In: EMBEC & NBC 2017, pp. 884–887. Springer (2017). Koutny, T.: Crosswalk–a time-ordered metric. In: EMBEC & NBC 2017, pp. 884–887. Springer (2017).
11.
Zurück zum Zitat Hu, Z., Xiong, S., Su, Q., Zhang, X.: Sufficient conditions for global convergence of differential evolution algorithm. Journal of Applied Mathematics 2013 (2013). Hu, Z., Xiong, S., Su, Q., Zhang, X.: Sufficient conditions for global convergence of differential evolution algorithm. Journal of Applied Mathematics 2013 (2013).
12.
Zurück zum Zitat Koutny, T.: Validating temporal concentration gradient to predict blood glucose level. Submitted to JAMIA (2017). Koutny, T.: Validating temporal concentration gradient to predict blood glucose level. Submitted to JAMIA (2017).
13.
Zurück zum Zitat Koutny, T.: Modelling of glucose dynamics for diabetes. In: International Conference on Bioinformatics and Biomedical Engineering, pp. 314–324. Springer (2017). Koutny, T.: Modelling of glucose dynamics for diabetes. In: International Conference on Bioinformatics and Biomedical Engineering, pp. 314–324. Springer (2017).
Metadaten
Titel
Analyzing Energy Requirements of Meta-Differential Evolution for Future Wearable Medical Devices
verfasst von
Tomas Koutny
David Siroky
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9023-3_44

Neuer Inhalt