Skip to main content

2017 | OriginalPaper | Buchkapitel

9. Antibacterial Polymeric Membranes

verfasst von : Juan Rodríguez-Hernández

Erschienen in: Polymers against Microorganisms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Membranes have been typically defined as interfaces between two interfaces having as a major role to regulate the transport between two different compartment and act as selective barrier. Membranes are able to selectively allow the transport of one substance in the presence of other compounds without the use of additives or the use of elevated temperatures, thus reducing the energy consumption. They have found multiple applications in different areas ranging from separation processes but have also been employed in the fabrication of biomaterials, catalytic purposes, or even lab-on-chip devices.
Several major characteristics including the low operation cost, relatively small footprint, and complicity with environmental regulations have provoked that polymers have been extensively employed for the fabrication of membranes. Polymeric membranes do not require the use of additives. This permits these membranes to be active at low temperatures thus enabling a significant decrease of the energy employed for the separation in comparison with other processes. In addition, these membranes are easily formed and up-scaling and downscaling can be easily carried out.
This chapter will provide a brief description about polymeric membranes focusing on one of the major remaining issues, that is, their contamination by microorganisms and, in particular, by bacteria. Upon a concise analysis of the problem, the alternative approaches developed to produce antifouling/antibacterial membranes will be thoroughly analyzed. For detailed reviews on membrane fabrication and their applications, the reader is referred to the following publications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ng LY, Mohammad AW, Leo CP, Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination. 2013;308:15–33.CrossRef Ng LY, Mohammad AW, Leo CP, Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination. 2013;308:15–33.CrossRef
2.
Zurück zum Zitat Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47:2217–62.CrossRef Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47:2217–62.CrossRef
3.
Zurück zum Zitat Farrell S, Sirkar KK. Mathematical model of a hybrid dispersed network-membrane-based controlled release system. J Control Release. 2001;70:51–61.CrossRef Farrell S, Sirkar KK. Mathematical model of a hybrid dispersed network-membrane-based controlled release system. J Control Release. 2001;70:51–61.CrossRef
4.
Zurück zum Zitat Konrad G, Kleinschmidt T. A new method for isolation of native alpha-lactalbumin from sweet whey. Int Dairy J. 2008;18:47–54.CrossRef Konrad G, Kleinschmidt T. A new method for isolation of native alpha-lactalbumin from sweet whey. Int Dairy J. 2008;18:47–54.CrossRef
5.
Zurück zum Zitat Bhattacharjee S, Bhattacharjee C, Datta S. Studies on the fractionation of beta-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J Membr Sci. 2006;275:141–50.CrossRef Bhattacharjee S, Bhattacharjee C, Datta S. Studies on the fractionation of beta-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J Membr Sci. 2006;275:141–50.CrossRef
6.
Zurück zum Zitat Kristiansen KR, Otte J, Ipsen R, Qvist KB. Large-scale preparation of beta-lactoglobulin A and B by ultrafiltration and ion-exchange chromatography. Int Dairy J. 1998;8:113–8.CrossRef Kristiansen KR, Otte J, Ipsen R, Qvist KB. Large-scale preparation of beta-lactoglobulin A and B by ultrafiltration and ion-exchange chromatography. Int Dairy J. 1998;8:113–8.CrossRef
7.
Zurück zum Zitat Xu Y, Sleigh R, Hourigan J, Johnson R. Separation of bovine immunoglobulin G and glycomacropeptide from dairy whey. Process Biochem. 2000;36:393–9.CrossRef Xu Y, Sleigh R, Hourigan J, Johnson R. Separation of bovine immunoglobulin G and glycomacropeptide from dairy whey. Process Biochem. 2000;36:393–9.CrossRef
8.
Zurück zum Zitat Cheang BL, Zydney AL. A two-stage ultrafiltration process for fractionation of whey protein isolate. J Membr Sci. 2004;231:159–67.CrossRef Cheang BL, Zydney AL. A two-stage ultrafiltration process for fractionation of whey protein isolate. J Membr Sci. 2004;231:159–67.CrossRef
9.
Zurück zum Zitat Mulder M. Basic principles of membrane technology. Berlin: Springer; 1996.CrossRef Mulder M. Basic principles of membrane technology. Berlin: Springer; 1996.CrossRef
10.
Zurück zum Zitat Pandey P, Chauhan RS. Membranes for gas separation. Prog Polym Sci. 2001;26:853–93.CrossRef Pandey P, Chauhan RS. Membranes for gas separation. Prog Polym Sci. 2001;26:853–93.CrossRef
11.
Zurück zum Zitat Sagle AC, Ju H, Freeman BD, Sharma MM. PEG-based hydrogel membrane coatings. Polymer. 2009;50:756–66.CrossRef Sagle AC, Ju H, Freeman BD, Sharma MM. PEG-based hydrogel membrane coatings. Polymer. 2009;50:756–66.CrossRef
12.
Zurück zum Zitat Flemming HC. Reverse osmosis membrane biofouling. Exp Therm Fluid Sci. 1997;14:382–91.CrossRef Flemming HC. Reverse osmosis membrane biofouling. Exp Therm Fluid Sci. 1997;14:382–91.CrossRef
13.
Zurück zum Zitat Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem. 2010;20:4567–86.CrossRef Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem. 2010;20:4567–86.CrossRef
14.
Zurück zum Zitat Flemming HC, Schaule G, Griebe T, Schmitt J, Tamachkiarowa A. Workshop on membranes in drinking water production technical innovations and health aspects. Biofouling—the Achilles heel of membrane processes. Desalination. 1997;113:215–25.CrossRef Flemming HC, Schaule G, Griebe T, Schmitt J, Tamachkiarowa A. Workshop on membranes in drinking water production technical innovations and health aspects. Biofouling—the Achilles heel of membrane processes. Desalination. 1997;113:215–25.CrossRef
15.
Zurück zum Zitat Misdan N, Lau WJ, Ismail AF. Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane—current development, challenges and future prospects. Desalination. 2012;287:228–37.CrossRef Misdan N, Lau WJ, Ismail AF. Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane—current development, challenges and future prospects. Desalination. 2012;287:228–37.CrossRef
16.
Zurück zum Zitat Wang Y, Kim JH, Choo KH, Lee YS, Lee CH. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J Membr Sci. 2000;169:269–76.CrossRef Wang Y, Kim JH, Choo KH, Lee YS, Lee CH. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J Membr Sci. 2000;169:269–76.CrossRef
17.
Zurück zum Zitat Kilduff JE, Mattaraj S, Pieracci JP, Belfort G. Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter. Desalination. 2000;132:133–42.CrossRef Kilduff JE, Mattaraj S, Pieracci JP, Belfort G. Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter. Desalination. 2000;132:133–42.CrossRef
18.
Zurück zum Zitat Baker JS, Dudley LY. Conference membranes in drinking and industrial water production. Biofouling in membrane systems—a review. Desalination. 1998;118:81–9.CrossRef Baker JS, Dudley LY. Conference membranes in drinking and industrial water production. Biofouling in membrane systems—a review. Desalination. 1998;118:81–9.CrossRef
19.
Zurück zum Zitat Kochkodan VM, Sharma VK. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: a review. J Environ Sci Health A. 2012;47:1713–27.CrossRef Kochkodan VM, Sharma VK. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: a review. J Environ Sci Health A. 2012;47:1713–27.CrossRef
20.
Zurück zum Zitat Misdan N, Ismail AF, Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination. 2016;380:105–11.CrossRef Misdan N, Ismail AF, Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination. 2016;380:105–11.CrossRef
21.
Zurück zum Zitat Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192–9.CrossRef Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192–9.CrossRef
22.
Zurück zum Zitat Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.CrossRef Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.CrossRef
23.
Zurück zum Zitat Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2011;23:690–718.CrossRef Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2011;23:690–718.CrossRef
24.
Zurück zum Zitat Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces. 2013;5:12895–904.CrossRef Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces. 2013;5:12895–904.CrossRef
25.
Zurück zum Zitat Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci. 2006;284:17–53.CrossRef Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci. 2006;284:17–53.CrossRef
26.
Zurück zum Zitat Viero AF, Sant’Anna Jr GL, Nobrega R. The use of polyetherimide hollow fibres in a submerged membrane bioreactor operating with air backwashing. J Membr Sci. 2007;302:127–35.CrossRef Viero AF, Sant’Anna Jr GL, Nobrega R. The use of polyetherimide hollow fibres in a submerged membrane bioreactor operating with air backwashing. J Membr Sci. 2007;302:127–35.CrossRef
27.
Zurück zum Zitat Wang Y-Q, Su Y-L, Sun Q, Ma X-L, Jiang Z-Y. Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J Membr Sci. 2006;286:228–36.CrossRef Wang Y-Q, Su Y-L, Sun Q, Ma X-L, Jiang Z-Y. Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J Membr Sci. 2006;286:228–36.CrossRef
28.
Zurück zum Zitat Mural PKS, Banerjee A, Rana MS, Shukla A, Padmanabhan B, Bhadra S, et al. Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE. J Mater Chem A. 2014;2:17635–48.CrossRef Mural PKS, Banerjee A, Rana MS, Shukla A, Padmanabhan B, Bhadra S, et al. Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE. J Mater Chem A. 2014;2:17635–48.CrossRef
29.
Zurück zum Zitat Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.CrossRef Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.CrossRef
30.
Zurück zum Zitat Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, et al. Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym. 2004;57:435–40.CrossRef Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, et al. Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym. 2004;57:435–40.CrossRef
31.
Zurück zum Zitat Chen S, Wu G, Long D, Liu Y. Preparation, characterization and antibacterial activity of chitosan–Ca3V10O28 complex membrane. Carbohydr Polym. 2006;64:92–7.CrossRef Chen S, Wu G, Long D, Liu Y. Preparation, characterization and antibacterial activity of chitosan–Ca3V10O28 complex membrane. Carbohydr Polym. 2006;64:92–7.CrossRef
32.
Zurück zum Zitat Asatekin A, Menniti A, Kang S, Elimelech M, Morgenroth E, Mayes AM. Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. J Membr Sci. 2006;285:81–9.CrossRef Asatekin A, Menniti A, Kang S, Elimelech M, Morgenroth E, Mayes AM. Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. J Membr Sci. 2006;285:81–9.CrossRef
33.
Zurück zum Zitat Ju H, McCloskey BD, Sagle AC, Kusuma VA, Freeman BD. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J Membr Sci. 2009;330:180–8.CrossRef Ju H, McCloskey BD, Sagle AC, Kusuma VA, Freeman BD. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J Membr Sci. 2009;330:180–8.CrossRef
34.
Zurück zum Zitat Sagle AC, Van Wagner EM, Ju H, McCloskey BD, Freeman BD, Sharma MM. PEG-coated reverse osmosis membranes: desalination properties and fouling resistance. J Membr Sci. 2009;340:92–108.CrossRef Sagle AC, Van Wagner EM, Ju H, McCloskey BD, Freeman BD, Sharma MM. PEG-coated reverse osmosis membranes: desalination properties and fouling resistance. J Membr Sci. 2009;340:92–108.CrossRef
35.
Zurück zum Zitat Maximous N, Nakhla G, Wan W, Wong K. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci. 2009;341:67–75.CrossRef Maximous N, Nakhla G, Wan W, Wong K. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci. 2009;341:67–75.CrossRef
36.
Zurück zum Zitat Yu S, Zuo X, Bao R, Xu X, Wang J, Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553–9.CrossRef Yu S, Zuo X, Bao R, Xu X, Wang J, Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553–9.CrossRef
37.
Zurück zum Zitat Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J Membr Sci. 2009;343:189–98.CrossRef Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J Membr Sci. 2009;343:189–98.CrossRef
38.
Zurück zum Zitat Bae T-H, Tak T-M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci. 2005;249:1–8.CrossRef Bae T-H, Tak T-M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci. 2005;249:1–8.CrossRef
39.
Zurück zum Zitat Kang SW, Hong J, Park JH, Mun SH, Kim JH, Cho J, et al. Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport. J Membr Sci. 2008;321:90–3.CrossRef Kang SW, Hong J, Park JH, Mun SH, Kim JH, Cho J, et al. Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport. J Membr Sci. 2008;321:90–3.CrossRef
40.
Zurück zum Zitat Kim H, Kim H-G, Kim S, Kim SS. PDMS–silica composite membranes with silane coupling for propylene separation. J Membr Sci. 2009;344:211–8.CrossRef Kim H, Kim H-G, Kim S, Kim SS. PDMS–silica composite membranes with silane coupling for propylene separation. J Membr Sci. 2009;344:211–8.CrossRef
41.
Zurück zum Zitat Park CH, Kim HK, Lee CH, Park HB, Lee YM. Nafion (R) nanocomposite membranes: effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance. J Power Sources. 2009;194:646–54.CrossRef Park CH, Kim HK, Lee CH, Park HB, Lee YM. Nafion (R) nanocomposite membranes: effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance. J Power Sources. 2009;194:646–54.CrossRef
42.
Zurück zum Zitat Leeuwenburgh SCG, Ana ID, Jansen JA. Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomater. 2010;6:836–44.CrossRef Leeuwenburgh SCG, Ana ID, Jansen JA. Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomater. 2010;6:836–44.CrossRef
43.
Zurück zum Zitat Li J-H, Xu Y-Y, Zhu L-P, Wang J-H, Du C-H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci. 2009;326:659–66.CrossRef Li J-H, Xu Y-Y, Zhu L-P, Wang J-H, Du C-H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci. 2009;326:659–66.CrossRef
44.
Zurück zum Zitat Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci. 2006;253:2003–10.CrossRef Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci. 2006;253:2003–10.CrossRef
45.
Zurück zum Zitat Gao L, Tang B, Wu P. An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry-wet phase inversion. J Membr Sci. 2009;326:168–77.CrossRef Gao L, Tang B, Wu P. An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry-wet phase inversion. J Membr Sci. 2009;326:168–77.CrossRef
46.
Zurück zum Zitat Li X, Chen C, Li J. Formation kinetics of polyethersulfone with cardo membrane via phase inversion. J Membr Sci. 2008;314:206–11.CrossRef Li X, Chen C, Li J. Formation kinetics of polyethersulfone with cardo membrane via phase inversion. J Membr Sci. 2008;314:206–11.CrossRef
47.
Zurück zum Zitat Bae TH, Tak TM. Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J Membr Sci. 2005;266:1–5.CrossRef Bae TH, Tak TM. Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J Membr Sci. 2005;266:1–5.CrossRef
48.
Zurück zum Zitat Kim SH, Kwak SY, Sohn BH, Park TH. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci. 2003;211:157–65.CrossRef Kim SH, Kwak SY, Sohn BH, Park TH. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci. 2003;211:157–65.CrossRef
49.
Zurück zum Zitat Li JS, Liang Y, Wang HY, Sun XY, Wang LJ. Preparation and characterization of TiO2/PVDF composite hollow fiber membrane. Acta Polym Sin. 2004;5:709–12. Li JS, Liang Y, Wang HY, Sun XY, Wang LJ. Preparation and characterization of TiO2/PVDF composite hollow fiber membrane. Acta Polym Sin. 2004;5:709–12.
50.
Zurück zum Zitat Khayet M, Villaluenga JPG, Valentin JL, Lopez-Manchado MA, Mengual JI, Seoane B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer. 2005;46:9881–91.CrossRef Khayet M, Villaluenga JPG, Valentin JL, Lopez-Manchado MA, Mengual JI, Seoane B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer. 2005;46:9881–91.CrossRef
51.
Zurück zum Zitat Trigo CEL, Porto AO, de Lima GM. Characterization of CdS nanoparticles in solutions of P(TFE-co-PVDF-co-Prop)/N,N-dimethylformamide. Eur Polym J. 2004;40:2465–9.CrossRef Trigo CEL, Porto AO, de Lima GM. Characterization of CdS nanoparticles in solutions of P(TFE-co-PVDF-co-Prop)/N,N-dimethylformamide. Eur Polym J. 2004;40:2465–9.CrossRef
52.
Zurück zum Zitat Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination. 2002;146:35–40.CrossRef Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination. 2002;146:35–40.CrossRef
53.
Zurück zum Zitat Du J, Wu L, Tao CY, Sun CX. Preparation and characterization of Fe3O4/PVDF magnetic composite membrane. Acta Phys Chim Sin. 2004;20:598–601. Du J, Wu L, Tao CY, Sun CX. Preparation and characterization of Fe3O4/PVDF magnetic composite membrane. Acta Phys Chim Sin. 2004;20:598–601.
54.
Zurück zum Zitat Genne I, Kuypers S, Leysen R. Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci. 1996;113:343–50.CrossRef Genne I, Kuypers S, Leysen R. Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci. 1996;113:343–50.CrossRef
55.
Zurück zum Zitat Schaep J, Vandecasteele C, Leysen R, Doyen W. Salt retention of Zirfon (R) membranes. Sep Purif Technol. 1998;14:127–31.CrossRef Schaep J, Vandecasteele C, Leysen R, Doyen W. Salt retention of Zirfon (R) membranes. Sep Purif Technol. 1998;14:127–31.CrossRef
56.
Zurück zum Zitat Bottino A, Capannelli G, D’Asti V, Piaggio P. Preparation and properties of novel organic-inorganic porous membranes. Sep Purif Technol. 2001;22–3:269–75.CrossRef Bottino A, Capannelli G, D’Asti V, Piaggio P. Preparation and properties of novel organic-inorganic porous membranes. Sep Purif Technol. 2001;22–3:269–75.CrossRef
57.
Zurück zum Zitat Aerts P, Greenberg AR, Leysen R, Krantz WB, Reinsch VE, Jacobs PA. The influence of filler concentration on the compaction and filtration properties of Zirfon (R)-composite ultrafiltration membranes. Sep Purif Technol. 2001;22–3:663–9.CrossRef Aerts P, Greenberg AR, Leysen R, Krantz WB, Reinsch VE, Jacobs PA. The influence of filler concentration on the compaction and filtration properties of Zirfon (R)-composite ultrafiltration membranes. Sep Purif Technol. 2001;22–3:663–9.CrossRef
58.
Zurück zum Zitat Ji WC, Sikdar SK. Pervaporation using adsorbent-filled membranes. Ind Eng Chem Res. 1996;35:1124–32.CrossRef Ji WC, Sikdar SK. Pervaporation using adsorbent-filled membranes. Ind Eng Chem Res. 1996;35:1124–32.CrossRef
59.
Zurück zum Zitat Xu ZK, Xiao L, Wang JL, Springer J. Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles. J Membr Sci. 2002;202:27–34.CrossRef Xu ZK, Xiao L, Wang JL, Springer J. Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles. J Membr Sci. 2002;202:27–34.CrossRef
60.
Zurück zum Zitat Zhang Y, Wang Z, Lin W, Sun H, Wu L, Chen S. A facile method for polyamide membrane modification by poly(sulfobetaine methacrylate) to improve fouling resistance. J Membr Sci. 2013;446:164–70.CrossRef Zhang Y, Wang Z, Lin W, Sun H, Wu L, Chen S. A facile method for polyamide membrane modification by poly(sulfobetaine methacrylate) to improve fouling resistance. J Membr Sci. 2013;446:164–70.CrossRef
61.
Zurück zum Zitat Meng J, Cao Z, Ni L, Zhang Y, Wang X, Zhang X, et al. A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties. J Membr Sci. 2014;461:123–9.CrossRef Meng J, Cao Z, Ni L, Zhang Y, Wang X, Zhang X, et al. A novel salt-responsive TFC RO membrane having superior antifouling and easy-cleaning properties. J Membr Sci. 2014;461:123–9.CrossRef
62.
Zurück zum Zitat Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592–7.CrossRef Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29:4592–7.CrossRef
63.
Zurück zum Zitat Chen S, Li L, Zhao C, Zheng J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010;51:5283–93.CrossRef Chen S, Li L, Zhao C, Zheng J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010;51:5283–93.CrossRef
64.
Zurück zum Zitat Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure − property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605–20.CrossRef Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure − property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605–20.CrossRef
65.
Zurück zum Zitat Gol RM, Bera A, Banjo S, Ganguly B, Jewrajka SK. Effect of amine spacer of PEG on the properties, performance and antifouling behavior of poly(piperazineamide) thin film composite nanofiltration membranes prepared by in situ PEGylation approach. J Membr Sci. 2014;472:154–66.CrossRef Gol RM, Bera A, Banjo S, Ganguly B, Jewrajka SK. Effect of amine spacer of PEG on the properties, performance and antifouling behavior of poly(piperazineamide) thin film composite nanofiltration membranes prepared by in situ PEGylation approach. J Membr Sci. 2014;472:154–66.CrossRef
66.
Zurück zum Zitat Gol RM, Jewrajka SK. Facile in situ PEGylation of polyamide thin film composite membranes for improving fouling resistance. J Membr Sci. 2014;455:271–82.CrossRef Gol RM, Jewrajka SK. Facile in situ PEGylation of polyamide thin film composite membranes for improving fouling resistance. J Membr Sci. 2014;455:271–82.CrossRef
67.
Zurück zum Zitat Martínez-Gómez A, Alvarez C, de Abajo J, del Campo A, Cortajarena AL, Rodriguez-Hernandez J. Poly(ethylene oxide) functionalized polyimide-based microporous films to prevent bacterial adhesion. ACS Appl Mater Interfaces. 2015;7:9716–24.CrossRef Martínez-Gómez A, Alvarez C, de Abajo J, del Campo A, Cortajarena AL, Rodriguez-Hernandez J. Poly(ethylene oxide) functionalized polyimide-based microporous films to prevent bacterial adhesion. ACS Appl Mater Interfaces. 2015;7:9716–24.CrossRef
68.
Zurück zum Zitat Luk Y-Y, Kato M, Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir. 2000;16:9604–8.CrossRef Luk Y-Y, Kato M, Mrksich M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir. 2000;16:9604–8.CrossRef
69.
Zurück zum Zitat Chen S, Zheng J, Li L, Jiang S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127:14473–8.CrossRef Chen S, Zheng J, Li L, Jiang S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127:14473–8.CrossRef
70.
Zurück zum Zitat Zhou C, Shi Y, Sun C, Yu S, Liu M, Gao C. Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration. J Membr Sci. 2014;471:381–91.CrossRef Zhou C, Shi Y, Sun C, Yu S, Liu M, Gao C. Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration. J Membr Sci. 2014;471:381–91.CrossRef
71.
Zurück zum Zitat Yu S, Yao G, Dong B, Zhu H, Peng X, Liu J, et al. Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin. Sep Purif Technol. 2013;118:285–93.CrossRef Yu S, Yao G, Dong B, Zhu H, Peng X, Liu J, et al. Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin. Sep Purif Technol. 2013;118:285–93.CrossRef
72.
Zurück zum Zitat Nikolaeva D, Langner C, Ghanem A, Rehim MA, Voit B, Meier-Haack J. Hydrogel surface modification of reverse osmosis membranes. J Membr Sci. 2015;476:264–76.CrossRef Nikolaeva D, Langner C, Ghanem A, Rehim MA, Voit B, Meier-Haack J. Hydrogel surface modification of reverse osmosis membranes. J Membr Sci. 2015;476:264–76.CrossRef
73.
Zurück zum Zitat Sarkar A, Carver PI, Zhang T, Merrington A, Bruza KJ, Rousseau JL, et al. Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes. J Membr Sci. 2010;349:421–8.CrossRef Sarkar A, Carver PI, Zhang T, Merrington A, Bruza KJ, Rousseau JL, et al. Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes. J Membr Sci. 2010;349:421–8.CrossRef
74.
Zurück zum Zitat Azari S, Zou L. Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J Membr Sci. 2012;401–402:68–75.CrossRef Azari S, Zou L. Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J Membr Sci. 2012;401–402:68–75.CrossRef
75.
Zurück zum Zitat Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13:1853–63.CrossRef Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13:1853–63.CrossRef
76.
Zurück zum Zitat Guo-Dong F, Fang Y, Zhigang L, Xinsong L. Solvent-resistant antibacterial microfibers of self-quaternized block copolymers from atom transfer radical polymerization and electrospinning. J Mater Chem. 2008;18:859–67.CrossRef Guo-Dong F, Fang Y, Zhigang L, Xinsong L. Solvent-resistant antibacterial microfibers of self-quaternized block copolymers from atom transfer radical polymerization and electrospinning. J Mater Chem. 2008;18:859–67.CrossRef
77.
Zurück zum Zitat Zhang Z, Wang Z, Wang J, Wang S. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N, N′-Methylenebis(acrylamide). Desalination. 2013;309:187–96.CrossRef Zhang Z, Wang Z, Wang J, Wang S. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N, N′-Methylenebis(acrylamide). Desalination. 2013;309:187–96.CrossRef
78.
Zurück zum Zitat Chen Z, Sun Y. N-halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Ind Eng Chem Res. 2006;45:2634–40.CrossRef Chen Z, Sun Y. N-halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Ind Eng Chem Res. 2006;45:2634–40.CrossRef
79.
Zurück zum Zitat Kasher R, Avneri S, Lutsky MY, Zhang J, Gellman SH, Stahl SS. Immobilization of antimicrobial polymers on RO membrane to reduce biofilm growth and biofouling. Google Patents; 2012. Kasher R, Avneri S, Lutsky MY, Zhang J, Gellman SH, Stahl SS. Immobilization of antimicrobial polymers on RO membrane to reduce biofilm growth and biofouling. Google Patents; 2012.
80.
Zurück zum Zitat Wei X, Wang Z, Zhang Z, Wang J, Wang S. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin. J Membr Sci. 2010;351:222–33.CrossRef Wei X, Wang Z, Zhang Z, Wang J, Wang S. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin. J Membr Sci. 2010;351:222–33.CrossRef
81.
Zurück zum Zitat Ni L, Meng J, Li X, Zhang Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J Membr Sci. 2014;451:205–15.CrossRef Ni L, Meng J, Li X, Zhang Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J Membr Sci. 2014;451:205–15.CrossRef
82.
Zurück zum Zitat Tiraferri A, Vecitis CD, Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces. 2011;3:2869–77.CrossRef Tiraferri A, Vecitis CD, Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces. 2011;3:2869–77.CrossRef
83.
Zurück zum Zitat Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G. Poly(amide-imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. J Membr Sci. 1997;135:65–79.CrossRef Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G. Poly(amide-imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. J Membr Sci. 1997;135:65–79.CrossRef
84.
Zurück zum Zitat Sadeghi M, Semsarzadeh MA, Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Membr Sci. 2009;331:21–30.CrossRef Sadeghi M, Semsarzadeh MA, Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Membr Sci. 2009;331:21–30.CrossRef
85.
Zurück zum Zitat Ahn J, Chung W-J, Pinnau I, Guiver MD. Poly sulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci. 2008;314:123–33.CrossRef Ahn J, Chung W-J, Pinnau I, Guiver MD. Poly sulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci. 2008;314:123–33.CrossRef
86.
Zurück zum Zitat Yu L-Y, Shen H-M, Xu Z-L. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J Appl Polym Sci. 2009;113:1763–72.CrossRef Yu L-Y, Shen H-M, Xu Z-L. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J Appl Polym Sci. 2009;113:1763–72.CrossRef
87.
Zurück zum Zitat Gilbert B, Ono RK, Ching KA, Kim CS. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci. 2009;339:285–95.CrossRef Gilbert B, Ono RK, Ching KA, Kim CS. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci. 2009;339:285–95.CrossRef
88.
Zurück zum Zitat Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009;43:715–23.CrossRef Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009;43:715–23.CrossRef
89.
Zurück zum Zitat Li L-H, Deng J-C, Deng H-R, Liu Z-L, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345:994–8.CrossRef Li L-H, Deng J-C, Deng H-R, Liu Z-L, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345:994–8.CrossRef
90.
Zurück zum Zitat Pant HR, Pandeya DR, Nam KT, W-i B, Hong ST, Kim HY. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater. 2011;189:465–71.CrossRef Pant HR, Pandeya DR, Nam KT, W-i B, Hong ST, Kim HY. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater. 2011;189:465–71.CrossRef
91.
Zurück zum Zitat Yalcinkaya F, Komarek M, Lubasova D, Sanetrnik F, Maryska J. Preparation of antibacterial nanofibre/nanoparticle covered composite yarns. J Nanomater. 2016. Yalcinkaya F, Komarek M, Lubasova D, Sanetrnik F, Maryska J. Preparation of antibacterial nanofibre/nanoparticle covered composite yarns. J Nanomater. 2016.
92.
Zurück zum Zitat Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci. 2010;355:53–9.CrossRef Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci. 2010;355:53–9.CrossRef
Metadaten
Titel
Antibacterial Polymeric Membranes
verfasst von
Juan Rodríguez-Hernández
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47961-3_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.