Skip to main content

2013 | OriginalPaper | Buchkapitel

18. Antimony

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Antimony (Sb) is a naturally occurring metalloid that has a wide range of industrial applications. There exists an increasing interest in this metalloid as it is likely to be a pollutant in industrialised environments. It is now known that Sb has fewer geochemical and toxicological similarities with As than previously believed. It has low mobility and bioavailability in soils, and presents low toxicity to plants, although where Sb is present in more mobile forms in the soil it can be accumulated by plants and affect their growth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ainsworth, N., Cooke, J. A., & Johnson, M. S. (1990). Distribution of antimony in contaminated grassland: 2-small mammals and invertebrates. Environmental Pollution, 65, 79–87.CrossRef Ainsworth, N., Cooke, J. A., & Johnson, M. S. (1990). Distribution of antimony in contaminated grassland: 2-small mammals and invertebrates. Environmental Pollution, 65, 79–87.CrossRef
2.
Zurück zum Zitat Ainsworth, N., Cooke, J. A., & Johnson, M. S. (1991). Biological significance of antimony in contaminated grassland. Water, Air, and Soil Pollution, 57–58, 193–199.CrossRef Ainsworth, N., Cooke, J. A., & Johnson, M. S. (1991). Biological significance of antimony in contaminated grassland. Water, Air, and Soil Pollution, 57–58, 193–199.CrossRef
3.
Zurück zum Zitat Amereih, S., Meisel, T., Scholger, R., & Wegscheider, W. (2005). Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS. Journal of Environmental Monitoring, 7, 1200–1206.CrossRef Amereih, S., Meisel, T., Scholger, R., & Wegscheider, W. (2005). Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS. Journal of Environmental Monitoring, 7, 1200–1206.CrossRef
4.
Zurück zum Zitat Baroni, F., Boscagli, A., Protano, G., & Riccobono, F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109, 347–352.CrossRef Baroni, F., Boscagli, A., Protano, G., & Riccobono, F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109, 347–352.CrossRef
5.
Zurück zum Zitat Belzile, N., Chen, Y.-W., & Wang, Z. (2001). Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chemical Geology, 174, 379–387.CrossRef Belzile, N., Chen, Y.-W., & Wang, Z. (2001). Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chemical Geology, 174, 379–387.CrossRef
6.
Zurück zum Zitat Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic. Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic.
7.
Zurück zum Zitat Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration. New York: Harper & Row. Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration. New York: Harper & Row.
8.
Zurück zum Zitat Buschmann, J., & Sigg, L. (2004). Antimony(III) binding to humic substances: Influence of pH and type of humic acid. Environmental Science and Technology, 38, 4535–4541.CrossRef Buschmann, J., & Sigg, L. (2004). Antimony(III) binding to humic substances: Influence of pH and type of humic acid. Environmental Science and Technology, 38, 4535–4541.CrossRef
9.
Zurück zum Zitat Butterman, W. C., & Carlin, J. F. J. (2004). Antimony. Mineral commodity profiles (Open file Report 03–019 2004). Washington, DC: U.S. Department of the Interior. Butterman, W. C., & Carlin, J. F. J. (2004). Antimony. Mineral commodity profiles (Open file Report 03–019 2004). Washington, DC: U.S. Department of the Interior.
10.
Zurück zum Zitat Cal-Prieto, M. J., Carlosena, A., Andrade, J. M., Martínez, M. L., Muniategui, S., López-Mahía, P., & Prada, D. (2001). Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. Water, Air, and Soil Pollution, 129, 333–348.CrossRef Cal-Prieto, M. J., Carlosena, A., Andrade, J. M., Martínez, M. L., Muniategui, S., López-Mahía, P., & Prada, D. (2001). Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. Water, Air, and Soil Pollution, 129, 333–348.CrossRef
11.
Zurück zum Zitat Carlin, J. F. Jr. (2007). Antimony. U.S. Geological survey minerals yearbook (pp. 6.1–6.8). Washington: U.S. Department of the Interior. Carlin, J. F. Jr. (2007). Antimony. U.S. Geological survey minerals yearbook (pp. 6.1–6.8). Washington: U.S. Department of the Interior.
12.
Zurück zum Zitat Carlin, J. F. Jr. (2009). Antimony. Mineral commodity summaries (pp. 20–21). U.S. Geological Survey. Washington: U.S. Department of the Interior. Carlin, J. F. Jr. (2009). Antimony. Mineral commodity summaries (pp. 20–21). U.S. Geological Survey. Washington: U.S. Department of the Interior.
13.
Zurück zum Zitat Ceriotti, G., & Amarasiriwardena, D. (2009). A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway. Microchemical Journal, 91, 85–93.CrossRef Ceriotti, G., & Amarasiriwardena, D. (2009). A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway. Microchemical Journal, 91, 85–93.CrossRef
14.
Zurück zum Zitat Clemente, R., Dickinson, N. M., & Lepp, N. W. (2008). Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution, 155, 254–261.CrossRef Clemente, R., Dickinson, N. M., & Lepp, N. W. (2008). Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution, 155, 254–261.CrossRef
15.
Zurück zum Zitat Cloy, J. M., Farmer, J. G., Graham, M. C., MacKenzie, A. B., & Cook, G. T. (2005). A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland. Journal of Environmental Monitoring, 7, 1137–1147.CrossRef Cloy, J. M., Farmer, J. G., Graham, M. C., MacKenzie, A. B., & Cook, G. T. (2005). A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland. Journal of Environmental Monitoring, 7, 1137–1147.CrossRef
16.
Zurück zum Zitat Council of the European Communities. (1976). Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the community. Official Journal L, 129, 23–29. Council of the European Communities. (1976). Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the community. Official Journal L, 129, 23–29.
17.
Zurück zum Zitat Ettler, V., Mihaljevic, M., Sebek, O., & Nechutny, Z. (2007). Antimony availability in highly polluted soils and sediments – A comparison of single extractions. Chemosphere, 68, 455–463.CrossRef Ettler, V., Mihaljevic, M., Sebek, O., & Nechutny, Z. (2007). Antimony availability in highly polluted soils and sediments – A comparison of single extractions. Chemosphere, 68, 455–463.CrossRef
18.
Zurück zum Zitat Filella, M., Belzile, N., & Chen, Y.-W. (2002). Antimony in the environment: A review focused on natural waters I. Occurrence. Earth-Science Review, 57, 125–176.CrossRef Filella, M., Belzile, N., & Chen, Y.-W. (2002). Antimony in the environment: A review focused on natural waters I. Occurrence. Earth-Science Review, 57, 125–176.CrossRef
19.
Zurück zum Zitat Filella, M., Williams, P. A., & Belzile, N. (2009). Antimony in the environment: Knowns and unknowns. Environmental Chemistry, 6, 95–105.CrossRef Filella, M., Williams, P. A., & Belzile, N. (2009). Antimony in the environment: Knowns and unknowns. Environmental Chemistry, 6, 95–105.CrossRef
20.
Zurück zum Zitat Flynn, H. C., Meharg, A. A., Bowyer, P. K., & Paton, G. I. (2003). Antimony bioavailability in mine soils. Environmental Pollution, 124, 93–100.CrossRef Flynn, H. C., Meharg, A. A., Bowyer, P. K., & Paton, G. I. (2003). Antimony bioavailability in mine soils. Environmental Pollution, 124, 93–100.CrossRef
21.
Zurück zum Zitat Fowler, B. A., & Goering, P. L. (1991). Antimony. In E. Merian (Ed.), Metals and their compounds in the environment: Occurrence, analysis and biological relevance (pp. 743–750). Weinheim: VCH Publishers. Fowler, B. A., & Goering, P. L. (1991). Antimony. In E. Merian (Ed.), Metals and their compounds in the environment: Occurrence, analysis and biological relevance (pp. 743–750). Weinheim: VCH Publishers.
22.
Zurück zum Zitat Gebel, T. (1997). Arsenic and antimony: Comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107, 131–144.CrossRef Gebel, T. (1997). Arsenic and antimony: Comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107, 131–144.CrossRef
23.
Zurück zum Zitat Hammel, W., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.CrossRef Hammel, W., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.CrossRef
24.
Zurück zum Zitat He, M. C., & Yang, J. R. (1999). Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Science of the Total Environment, 149, 243–244. He, M. C., & Yang, J. R. (1999). Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Science of the Total Environment, 149, 243–244.
25.
Zurück zum Zitat Johnson, C. A., Moench, H., Wersin, P., Kugler, P., & Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. Journal of Environmental Quality, 34, 248–254. Johnson, C. A., Moench, H., Wersin, P., Kugler, P., & Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. Journal of Environmental Quality, 34, 248–254.
26.
Zurück zum Zitat Jones, K. C., Lepp, N. W., & Obbard, J. P. (1990). Other metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 280–321). Glasgow: Blackie. Jones, K. C., Lepp, N. W., & Obbard, J. P. (1990). Other metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 280–321). Glasgow: Blackie.
27.
Zurück zum Zitat Jung, M. C., Thornton, I., & Chon, H. T. (2002). Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Science of the Total Environment, 295, 81–89.CrossRef Jung, M. C., Thornton, I., & Chon, H. T. (2002). Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea. Science of the Total Environment, 295, 81–89.CrossRef
28.
Zurück zum Zitat Kabata-Pendias, A. (1992). Trace elements in soils and plants. Boca Raton: CRC Press. Kabata-Pendias, A. (1992). Trace elements in soils and plants. Boca Raton: CRC Press.
29.
Zurück zum Zitat King, R. B. (1995). Antimony. In R. B. King (Ed.), Inorganic chemistry. Encyclopedia of inorganic chemistry (Vol. 1, pp. 174–176). Chichester: Wiley. King, R. B. (1995). Antimony. In R. B. King (Ed.), Inorganic chemistry. Encyclopedia of inorganic chemistry (Vol. 1, pp. 174–176). Chichester: Wiley.
30.
Zurück zum Zitat Klitzke, S., & Lang, F. (2009). Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil – Effects of pH increase and counterion valency. Journal of Environmental Quality, 38, 933–939.CrossRef Klitzke, S., & Lang, F. (2009). Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil – Effects of pH increase and counterion valency. Journal of Environmental Quality, 38, 933–939.CrossRef
31.
Zurück zum Zitat Krachler, M., Shotyk, W., & Emons, H. (2001). Digestion procedures for the determination of antimony and arsenic in small amounts of peat samples by hydride generation-atomic absorption spectrometry. Analytica Chimica Acta, 432, 307–314.CrossRef Krachler, M., Shotyk, W., & Emons, H. (2001). Digestion procedures for the determination of antimony and arsenic in small amounts of peat samples by hydride generation-atomic absorption spectrometry. Analytica Chimica Acta, 432, 307–314.CrossRef
32.
Zurück zum Zitat Krachler, M., Zheng, J., Koerner, R., Zdanowitz, C., Fisher, D., & Shotyk, W. (2005). Increasing atmospheric antimony contamination in the northern hemisphere: Snow and ice evidence from Devon Island. Journal of Environmental Monitoring, 7, 1169–1176.CrossRef Krachler, M., Zheng, J., Koerner, R., Zdanowitz, C., Fisher, D., & Shotyk, W. (2005). Increasing atmospheric antimony contamination in the northern hemisphere: Snow and ice evidence from Devon Island. Journal of Environmental Monitoring, 7, 1169–1176.CrossRef
33.
Zurück zum Zitat Kuperman, R. G., Checkal, R. T., Simini, M., Phillips, C. T., Speicher, J. A., & Barcliff, D. J. (2006). Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsimia candida, Eisenia fetida, and Enchytraeus crypticus. Environmental Toxicology and Chemistry, 25, 754–762.CrossRef Kuperman, R. G., Checkal, R. T., Simini, M., Phillips, C. T., Speicher, J. A., & Barcliff, D. J. (2006). Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsimia candida, Eisenia fetida, and Enchytraeus crypticus. Environmental Toxicology and Chemistry, 25, 754–762.CrossRef
34.
Zurück zum Zitat Leuz, A.-K., & Johnson, C. A. (2005). Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions. Geochimica et Cosmochimica Acta, 69, 1165–1172.CrossRef Leuz, A.-K., & Johnson, C. A. (2005). Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions. Geochimica et Cosmochimica Acta, 69, 1165–1172.CrossRef
35.
Zurück zum Zitat Leyva, A. G., Marrero, J., Smichowski, P., & Cicerone, D. (2001). Sorption of antimony onto hydroxyapatite. Environmental Science and Technology, 35, 3669–3675.CrossRef Leyva, A. G., Marrero, J., Smichowski, P., & Cicerone, D. (2001). Sorption of antimony onto hydroxyapatite. Environmental Science and Technology, 35, 3669–3675.CrossRef
36.
Zurück zum Zitat Li, X., & Thornton, I. (1993). Arsenic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England. Environmental Geochemistry and Health, 15, 135–144.CrossRef Li, X., & Thornton, I. (1993). Arsenic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England. Environmental Geochemistry and Health, 15, 135–144.CrossRef
37.
Zurück zum Zitat Lintschinger, J., Michalke, B., Schulte-Hostede, S., & Schramel, P. (1998). Studies on speciation of antimony in soil contaminated by industrial activity. International Journal of Environmental and Analytical Chemistry, 72, 11–25.CrossRef Lintschinger, J., Michalke, B., Schulte-Hostede, S., & Schramel, P. (1998). Studies on speciation of antimony in soil contaminated by industrial activity. International Journal of Environmental and Analytical Chemistry, 72, 11–25.CrossRef
38.
Zurück zum Zitat Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environmental International, 30, 159–165.CrossRef Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environmental International, 30, 159–165.CrossRef
39.
Zurück zum Zitat Markert, B. (1996). Instrumental element and multi-element analysis of plant samples. Methods and applications. New York: Wiley. Markert, B. (1996). Instrumental element and multi-element analysis of plant samples. Methods and applications. New York: Wiley.
40.
Zurück zum Zitat McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press. McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.
41.
Zurück zum Zitat Mitsunobu, S., Harada, T., & Takahashi, Y. (2006). Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environmental Science and Technology, 40, 7270–7276.CrossRef Mitsunobu, S., Harada, T., & Takahashi, Y. (2006). Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environmental Science and Technology, 40, 7270–7276.CrossRef
42.
Zurück zum Zitat Murciego Murciego, A., García Sánchez, A., Rodríguez González, M. A., Pinilla Gil, E., Toro Gordillo, C., Cabezas Fernández, J., & Buyolo Triguero, T. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145, 15–21.CrossRef Murciego Murciego, A., García Sánchez, A., Rodríguez González, M. A., Pinilla Gil, E., Toro Gordillo, C., Cabezas Fernández, J., & Buyolo Triguero, T. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145, 15–21.CrossRef
43.
Zurück zum Zitat Nakamaru, Y., Tagami, K., & Uchida, S. (2006). Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Environmental Pollution, 141, 321–326.CrossRef Nakamaru, Y., Tagami, K., & Uchida, S. (2006). Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Environmental Pollution, 141, 321–326.CrossRef
44.
Zurück zum Zitat Nriagu, J. O. (1990). Global metal pollution: Poisoning the biosphere? Environment, 32, 28–33.CrossRef Nriagu, J. O. (1990). Global metal pollution: Poisoning the biosphere? Environment, 32, 28–33.CrossRef
45.
Zurück zum Zitat Oorts, K., & Smolders, E. (2009). Ecological threshold concentrations for antimony in water and soil. Environmental Chemistry, 6, 116–121.CrossRef Oorts, K., & Smolders, E. (2009). Ecological threshold concentrations for antimony in water and soil. Environmental Chemistry, 6, 116–121.CrossRef
46.
Zurück zum Zitat Oorts, K., Smolders, E., Degryse, F., Buekers, J., Gascó, G., Cornelis, G., & Mertens, J. (2008). Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environmental Science and Technology, 42, 4378–4383.CrossRef Oorts, K., Smolders, E., Degryse, F., Buekers, J., Gascó, G., Cornelis, G., & Mertens, J. (2008). Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environmental Science and Technology, 42, 4378–4383.CrossRef
47.
Zurück zum Zitat Rish, M. A. (2004). Antimony. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment (2nd ed., pp. 659–670). Weinheim: Wiley-VCH.CrossRef Rish, M. A. (2004). Antimony. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment (2nd ed., pp. 659–670). Weinheim: Wiley-VCH.CrossRef
48.
Zurück zum Zitat Robinson, B. H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., Gruenwald, A., Attinger, W., & Schulin, R. (2008). Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environmental Pollution, 153, 668–676.CrossRef Robinson, B. H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., Gruenwald, A., Attinger, W., & Schulin, R. (2008). Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environmental Pollution, 153, 668–676.CrossRef
49.
Zurück zum Zitat Salminen, R. (Ed.). (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland. Salminen, R. (Ed.). (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland.
50.
Zurück zum Zitat Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A.-K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312.CrossRef Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A.-K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312.CrossRef
51.
Zurück zum Zitat Shotyk, W., Cheburkin, A. K., Appleby, P. G., Fankhauser, A., & Kramers, J. D. (1996). Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth and Planetary Science Letters, 145, E1–E7.CrossRef Shotyk, W., Cheburkin, A. K., Appleby, P. G., Fankhauser, A., & Kramers, J. D. (1996). Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth and Planetary Science Letters, 145, E1–E7.CrossRef
52.
Zurück zum Zitat Shotyk, W., Krachler, M., & Chen, B. (2004). Antimony in recent, ombrotrophic peat from Switzerland and Scotland: comparison with natural background values (5320 to 8020 14C yr BP) and implications for the global Sb cycle. Global Biogeochemical Cycles, 18, 1–13. GB1016. Shotyk, W., Krachler, M., & Chen, B. (2004). Antimony in recent, ombrotrophic peat from Switzerland and Scotland: comparison with natural background values (5320 to 8020 14C yr BP) and implications for the global Sb cycle. Global Biogeochemical Cycles, 18, 1–13. GB1016.
53.
Zurück zum Zitat Shotyk, W., Krachler, M., & Chen, B. (2006). Contamination of Canadian and European bottled waters with antimony from PET containers. Journal of Environmental Monitoring, 8, 288–292.CrossRef Shotyk, W., Krachler, M., & Chen, B. (2006). Contamination of Canadian and European bottled waters with antimony from PET containers. Journal of Environmental Monitoring, 8, 288–292.CrossRef
54.
Zurück zum Zitat Sneddon, J., Clemente, R., Riby, P., & Lepp, N. W. (2009). Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environmental Pollution, 157, 2663–2669.CrossRef Sneddon, J., Clemente, R., Riby, P., & Lepp, N. W. (2009). Source-pathway-receptor investigation of the fate of trace elements derived from shotgun pellets discharged in terrestrial ecosystems managed for game shooting. Environmental Pollution, 157, 2663–2669.CrossRef
55.
Zurück zum Zitat Steely, S., Amarasiriwardena, D., & Xing, B. (2007). An investigation of inorganic antimony species and antimony associated with humic acid molar mass fractions in contaminated soils. Environmental Pollution, 148, 590–598.CrossRef Steely, S., Amarasiriwardena, D., & Xing, B. (2007). An investigation of inorganic antimony species and antimony associated with humic acid molar mass fractions in contaminated soils. Environmental Pollution, 148, 590–598.CrossRef
56.
Zurück zum Zitat Sun, H., Yan, S. C., & Cheng, W. S. (2000). Interaction of antimony tartrate with the tripeptide glutathione. Implication for its mode of action. European Journal of Biochemistry, 267, 5450–5457.CrossRef Sun, H., Yan, S. C., & Cheng, W. S. (2000). Interaction of antimony tartrate with the tripeptide glutathione. Implication for its mode of action. European Journal of Biochemistry, 267, 5450–5457.CrossRef
57.
Zurück zum Zitat Takahashi, T., Shozugawa, K., & Matsuo, M. (2009). Contribution of amorphous iron compounds to adsorptions of pentavalent antimony by soils. Water, Air, and Soil Pollution, 208, 165–172.CrossRef Takahashi, T., Shozugawa, K., & Matsuo, M. (2009). Contribution of amorphous iron compounds to adsorptions of pentavalent antimony by soils. Water, Air, and Soil Pollution, 208, 165–172.CrossRef
58.
Zurück zum Zitat Takaoka, M., Fukutani, S., Yamamoto, T., Horiuchi, M., Satta, N., Takeda, N., Oshita, K., Yoneda, M., Morisawa, S., & Tanaka, T. (2005). Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure. Analytical Sciences, 21, 769–773.CrossRef Takaoka, M., Fukutani, S., Yamamoto, T., Horiuchi, M., Satta, N., Takeda, N., Oshita, K., Yoneda, M., Morisawa, S., & Tanaka, T. (2005). Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure. Analytical Sciences, 21, 769–773.CrossRef
59.
Zurück zum Zitat Tighe, M., Ashley, P., Lockwood, P., & Wilson, S. (2005). Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Science of the Total Environment, 347, 175–186.CrossRef Tighe, M., Ashley, P., Lockwood, P., & Wilson, S. (2005). Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Science of the Total Environment, 347, 175–186.CrossRef
60.
Zurück zum Zitat Tschan, M., Robinson, B. H., & Schulin, R. (2009). Antimony in the soil–plant system – A review. Environmental Chemistry, 6, 106–115.CrossRef Tschan, M., Robinson, B. H., & Schulin, R. (2009). Antimony in the soil–plant system – A review. Environmental Chemistry, 6, 106–115.CrossRef
61.
Zurück zum Zitat USEPA. (1979). Water related fate of the 129 priority pollutants (Vol. 1). Washington, DC: USEPA. USEPA. (1979). Water related fate of the 129 priority pollutants (Vol. 1). Washington, DC: USEPA.
62.
Zurück zum Zitat Wolfram, H., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.CrossRef Wolfram, H., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.CrossRef
63.
Zurück zum Zitat Yakhontova, L. K. (1998). Microorganisms in supergenic processes. In A. S. Marfunin (Ed.), Advanced mineralogy: Mineral matter in space, mantle, ocean floor, biosphere, environmental management and jewelry (pp. 257–261). Berlin: Springer. Yakhontova, L. K. (1998). Microorganisms in supergenic processes. In A. S. Marfunin (Ed.), Advanced mineralogy: Mineral matter in space, mantle, ocean floor, biosphere, environmental management and jewelry (pp. 257–261). Berlin: Springer.
Metadaten
Titel
Antimony
Copyright-Jahr
2013
DOI
https://doi.org/10.1007/978-94-007-4470-7_18