Skip to main content

2023 | OriginalPaper | Buchkapitel

Application of Artificial Neural Networks (ANNS) in Prediction of Compressive Strength of PCM-Integrated Concretes

verfasst von : Marani Afshin, Nehdi Moncef L

Erschienen in: Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phase Change Materials (PCMs) have been proven to enhance the thermal performance of cementitious composites owing to their thermal energy storage (TES) capacity. Nevertheless, they can hamper the compressive strength of the concrete. Several pertinent factors have a complex and non-linear negative influence on the compressive strength, and thus it is difficult to model the mechanical strength development of such composites using conventional statistical procedures. Therefore, this study explores the feasibility of using Artificial Neural Networks (ANNs) to predict the compressive strength of cement mortar and concrete integrating PCM microcapsules. For this purpose, a dataset comprising 160 examples of mixture proportions and 10 input features is used to create the ANN model. The dataset is currently the largest that could be extracted from studies in the open literature. Several statistical metrics are used to evaluate the performance of the proposed model. It is demonstrated that the developed ANN has a very promising capability in predicting the compressive strength of cementitious composites incorporating PCM microcapsules with desirable accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Marani A, Nehdi ML (2019) Integrating phase change materials in construction materials: critical review. Constr Build Mater 217:36–49CrossRef Marani A, Nehdi ML (2019) Integrating phase change materials in construction materials: critical review. Constr Build Mater 217:36–49CrossRef
2.
Zurück zum Zitat Rao VV et al (2018) PCM-mortar based construction materials for energy efficient buildings: a review on research trends. Energy and Buildings 158:95–122CrossRef Rao VV et al (2018) PCM-mortar based construction materials for energy efficient buildings: a review on research trends. Energy and Buildings 158:95–122CrossRef
3.
Zurück zum Zitat Drissi S et al (2019) A review of microencapsulated and composite phase change materials: alteration of strength and thermal properties of cement-based materials. Renew Sustain Energy Rev 110:467–484CrossRef Drissi S et al (2019) A review of microencapsulated and composite phase change materials: alteration of strength and thermal properties of cement-based materials. Renew Sustain Energy Rev 110:467–484CrossRef
4.
Zurück zum Zitat Jayalath A et al (2016) Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Constr Build Mater 120:408–417CrossRef Jayalath A et al (2016) Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Constr Build Mater 120:408–417CrossRef
5.
Zurück zum Zitat Topcu IB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 41(3):305–311CrossRef Topcu IB, Sarıdemir M (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci 41(3):305–311CrossRef
6.
Zurück zum Zitat Chandwani V et al (2015) Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Syst Appl 42(2):885–893CrossRef Chandwani V et al (2015) Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Syst Appl 42(2):885–893CrossRef
7.
Zurück zum Zitat Khademi F et al (2017) Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front Struct Civ Eng 11(1):90–99CrossRef Khademi F et al (2017) Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front Struct Civ Eng 11(1):90–99CrossRef
8.
Zurück zum Zitat Marani A, Nehdi ML (2020) Machine learning prediction of compressive strength for phase change materials integrated cementitious composites. Constr Builg Mater 265:120286CrossRef Marani A, Nehdi ML (2020) Machine learning prediction of compressive strength for phase change materials integrated cementitious composites. Constr Builg Mater 265:120286CrossRef
9.
Zurück zum Zitat Nguyen T et al (2019) Deep neural network with high-order neuron for the prediction of foamed concrete strength. Comput-Aided Civil Infrastruct Eng 34(4):316–332CrossRef Nguyen T et al (2019) Deep neural network with high-order neuron for the prediction of foamed concrete strength. Comput-Aided Civil Infrastruct Eng 34(4):316–332CrossRef
10.
Zurück zum Zitat Alshihri MM et al (2009) Neural networks for predicting compressive strength of structural light weight concrete. Constr Build Mater 23(6):2214–2219CrossRef Alshihri MM et al (2009) Neural networks for predicting compressive strength of structural light weight concrete. Constr Build Mater 23(6):2214–2219CrossRef
11.
Zurück zum Zitat Bilim C et al (2009) Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw 40(5):334–340MATHCrossRef Bilim C et al (2009) Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Softw 40(5):334–340MATHCrossRef
12.
Zurück zum Zitat Rodriguez-Galiano V et al (2015) Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev 71:804–818CrossRef Rodriguez-Galiano V et al (2015) Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev 71:804–818CrossRef
13.
Zurück zum Zitat Ramadan Suleiman A, Nehdi ML (2017) Modeling self-healing of concrete using hybrid genetic algorithm–artificial neural network. Materials 10(2):135CrossRef Ramadan Suleiman A, Nehdi ML (2017) Modeling self-healing of concrete using hybrid genetic algorithm–artificial neural network. Materials 10(2):135CrossRef
14.
Zurück zum Zitat Nunez I et al (2020) Mixture optimization of recycled aggregate concrete using hybrid machine learning model. Materials 13(19):4331CrossRef Nunez I et al (2020) Mixture optimization of recycled aggregate concrete using hybrid machine learning model. Materials 13(19):4331CrossRef
15.
Zurück zum Zitat Zhang J et al (2019) Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr Build Mater 210:713–719CrossRef Zhang J et al (2019) Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr Build Mater 210:713–719CrossRef
16.
Zurück zum Zitat Hunger M et al (2009) The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement Concr Compos 31(10):731–743CrossRef Hunger M et al (2009) The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement Concr Compos 31(10):731–743CrossRef
17.
Zurück zum Zitat Meshgin P, Xi Y (2012) "Effect of phase-change materials on properties of concrete." ACI Mater J 109(1) Meshgin P, Xi Y (2012) "Effect of phase-change materials on properties of concrete." ACI Mater J 109(1)
18.
Zurück zum Zitat Dehdezi PK et al (2013) Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int J Pavement Eng 14(5):449–462CrossRef Dehdezi PK et al (2013) Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. Int J Pavement Eng 14(5):449–462CrossRef
19.
Zurück zum Zitat Lecompte T et al (2015) Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. Energy and Buildings 94:52–60CrossRef Lecompte T et al (2015) Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. Energy and Buildings 94:52–60CrossRef
20.
Zurück zum Zitat Aguayo M et al (2016) The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations. Cement Concr Compos 73:29–41CrossRef Aguayo M et al (2016) The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations. Cement Concr Compos 73:29–41CrossRef
21.
Zurück zum Zitat Snoeck D et al (2016) Encapsulated phase-change materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater Struct 49(1):225–239CrossRef Snoeck D et al (2016) Encapsulated phase-change materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater Struct 49(1):225–239CrossRef
22.
Zurück zum Zitat Liu F et al (2017) Integrating phase change materials into concrete through microencapsulation using cenospheres. Cement Concr Compos 80:317–325CrossRef Liu F et al (2017) Integrating phase change materials into concrete through microencapsulation using cenospheres. Cement Concr Compos 80:317–325CrossRef
23.
Zurück zum Zitat Pilehvar S et al (2017) Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cem Concr Res 100:341–349CrossRef Pilehvar S et al (2017) Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cem Concr Res 100:341–349CrossRef
24.
Zurück zum Zitat D’Alessandro A et al (2018) Multifunctional smart concretes with novel phase change materials: mechanical and thermo-energy investigation. Appl Energy 212:1448–1461CrossRef D’Alessandro A et al (2018) Multifunctional smart concretes with novel phase change materials: mechanical and thermo-energy investigation. Appl Energy 212:1448–1461CrossRef
25.
Zurück zum Zitat Nehdi M et al (2001) Predicting performance of self-compacting concrete mixtures using artificial neural networks. Mater J 98(5):394–401 Nehdi M et al (2001) Predicting performance of self-compacting concrete mixtures using artificial neural networks. Mater J 98(5):394–401
26.
Zurück zum Zitat Marani A et al (2020) Predicting ultra-high-performance concrete compressive strength using tabular generative adversarial networks. Materials 13(21):4757CrossRef Marani A et al (2020) Predicting ultra-high-performance concrete compressive strength using tabular generative adversarial networks. Materials 13(21):4757CrossRef
Metadaten
Titel
Application of Artificial Neural Networks (ANNS) in Prediction of Compressive Strength of PCM-Integrated Concretes
verfasst von
Marani Afshin
Nehdi Moncef L
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-1004-3_13