Skip to main content
Erschienen in: Quantum Information Processing 7/2015

01.07.2015

Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles

verfasst von: Kishore Thapliyal, Anirban Pathak

Erschienen in: Quantum Information Processing | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, several aspects of controlled quantum communication (e.g., bidirectional controlled state teleportation, controlled quantum secure direct communication, controlled quantum dialogue, etc.) have been studied using \(n\)-qubit \((n\ge 3)\) entanglement. Specially, a large number of schemes for bidirectional controlled state teleportation are proposed using \(m\)-qubit entanglement \((m\in \{5,6,7\})\). Here, we propose a set of protocols to illustrate that it is possible to realize all these tasks related to controlled quantum communication using only Bell states and permutation of particles. As the generation and maintenance of a Bell state is much easier than a multi-partite entanglement, the proposed strategy has a clear advantage over the existing proposals. Further, it is shown that all the schemes proposed here may be viewed as applications of the concept of quantum cryptographic switch which was recently introduced by some of us. The performances of the proposed protocols as subjected to the amplitude damping and phase damping noise on the channels are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
By the same logic, we mean that unless Charlie measures his qubits and discloses the results, Alice and Bob do not know which Bell states they share.
 
2
We can assume that Charlie has a quantum random number generator, and he has generated a large sequence of 0 and 1 through it. He uses the outcomes of the random number generator to decide which Bell state is to be prepared. For example, we may consider that if the first two bit values obtained from the random number generator are 00, 01, 10 and 11 then he prepares \(|\psi ^{+}\rangle ,|\psi ^{-}\rangle ,|\phi ^{+}\rangle ,\) and \(|\phi ^{-}\rangle ,\) respectively.
 
3
BB84 subroutine [36] means eavesdropping is checked by following a procedure similar to that adopted in the original BB84 protocol. Specifically, BB84 subroutine implies that Alice (Bob) randomly selects half of the qubits received by her (him) to form a verification string. She (He) measures the verification qubits randomly in \(\left\{ |0\rangle ,|1\rangle \right\} \) or \(\left\{ |+\rangle ,|-\rangle \right\} \) basis and announces the measurement outcome, the position of that qubit in the string and the basis used for the particular measurement. Bob (Alice) also measures the corresponding qubit using the same basis (if needed) and compares his (her) result with the announced result of Alice (Bob) to detect eavesdropping.
 
4
Usually fidelity \(F(\sigma ,\rho )\) of two quantum states \(\rho \) and \(\sigma \) is defined as \(F(\sigma ,\rho )=Tr\sqrt{\sigma ^{\frac{1}{2}}\rho \sigma ^{\frac{1}{2}}}.\) However, in the present work, we have used (6) as the definition of fidelity.
 
5
AD and GAD channels are the special cases of SGAD channel.
 
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crï¿peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MATHMathSciNetADSCrossRef Bennett, C.H., Brassard, G., Crï¿peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MATHMathSciNetADSCrossRef
2.
3.
Zurück zum Zitat Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of \(n\)-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389 (2011)MATHCrossRef Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of \(n\)-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389 (2011)MATHCrossRef
5.
Zurück zum Zitat Wang, X.W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)ADSCrossRef Wang, X.W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)ADSCrossRef
7.
8.
Zurück zum Zitat Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)ADSCrossRef Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)ADSCrossRef
9.
Zurück zum Zitat Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)ADSCrossRef Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)ADSCrossRef
10.
Zurück zum Zitat Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)MathSciNetCrossRef Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)MathSciNetCrossRef
11.
Zurück zum Zitat Zha, X.-W., Song, H.-Y., Ma, G.-L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. quant-ph/1006.0052 (2010) Zha, X.-W., Song, H.-Y., Ma, G.-L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. quant-ph/1006.0052 (2010)
12.
Zurück zum Zitat Li, Y.-H., Nie, L-p: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630 (2013)MathSciNetCrossRef Li, Y.-H., Nie, L-p: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630 (2013)MathSciNetCrossRef
13.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790 (2013)MathSciNetCrossRef Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790 (2013)MathSciNetCrossRef
14.
Zurück zum Zitat Li, Y.-H., Li, X.-L., Sang, M.-H., Nie, Y.-Y., Wang, Z.-S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835 (2013)MATHMathSciNetADSCrossRef Li, Y.-H., Li, X.-L., Sang, M.-H., Nie, Y.-Y., Wang, Z.-S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835 (2013)MATHMathSciNetADSCrossRef
15.
Zurück zum Zitat Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780 (2014)MATHCrossRef Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780 (2014)MATHCrossRef
16.
Zurück zum Zitat Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53, 1840 (2014)MATHCrossRef Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53, 1840 (2014)MATHCrossRef
17.
Zurück zum Zitat Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269 (2014) Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269 (2014)
18.
Zurück zum Zitat An, Y.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)MATHCrossRef An, Y.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)MATHCrossRef
19.
Zurück zum Zitat Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697 (2014)MATHCrossRef Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697 (2014)MATHCrossRef
20.
Zurück zum Zitat Dong, Li, Xiu, X.-M., Gao, Y.-J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281, 6135 (2008)ADSCrossRef Dong, Li, Xiu, X.-M., Gao, Y.-J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281, 6135 (2008)ADSCrossRef
21.
Zurück zum Zitat Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soc. 48, 24 (2006) Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soc. 48, 24 (2006)
22.
Zurück zum Zitat Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process 14, 739 (2014) Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process 14, 739 (2014)
23.
Zurück zum Zitat Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)ADSCrossRef Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)ADSCrossRef
24.
Zurück zum Zitat Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef Deng, F.-G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef
25.
Zurück zum Zitat Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetCrossRef Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetCrossRef
26.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)MathSciNetCrossRef Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)ADSCrossRef Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)ADSCrossRef
28.
Zurück zum Zitat Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731 (2014)MATHMathSciNetADSCrossRef Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731 (2014)MATHMathSciNetADSCrossRef
30.
Zurück zum Zitat Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)MathSciNetADSCrossRef Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)MathSciNetADSCrossRef
31.
Zurück zum Zitat Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems, and signal processing, Bangalore, India, p. 175 (1984) Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems, and signal processing, Bangalore, India, p. 175 (1984)
33.
Zurück zum Zitat Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
34.
Zurück zum Zitat Cai, Q.-Y., Li, B-w: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)ADSCrossRef Cai, Q.-Y., Li, B-w: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)ADSCrossRef
35.
Zurück zum Zitat Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
36.
Zurück zum Zitat Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATH Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATH
37.
Zurück zum Zitat Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)MATHMathSciNetCrossRef Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)MATHMathSciNetCrossRef
38.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)
39.
Zurück zum Zitat Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)MATHCrossRef Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)MATHCrossRef
40.
Zurück zum Zitat Sharma, V., Shukla, C., Banerjee, S., & Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. arXiv:1409.0833 (2014) Sharma, V., Shukla, C., Banerjee, S., & Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. arXiv:​1409.​0833 (2014)
41.
Zurück zum Zitat Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)ADSCrossRef Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)ADSCrossRef
42.
Zurück zum Zitat Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)ADSCrossRef Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)ADSCrossRef
43.
Zurück zum Zitat Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015003 (2014)ADSCrossRef Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015003 (2014)ADSCrossRef
Metadaten
Titel
Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles
verfasst von
Kishore Thapliyal
Anirban Pathak
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 7/2015
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-0987-z

Weitere Artikel der Ausgabe 7/2015

Quantum Information Processing 7/2015 Zur Ausgabe

Neuer Inhalt