Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2015

01.04.2015 | Research Paper

Approach for an improved experimental evaluation of the specific absorption rate in magnetic fluid hyperthermia

verfasst von: N. Iacob, G. Schinteie, P. Palade, V. Kuncser

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new methodology for the accurate determination of the specific absorption rate of ferrofluids with magnetite nanoparticles of average size of about 10 nm subjected to alternative current magnetic fields is proposed. A simple numerical compensation of the heating rates by the cooling rates obtained at similar temperatures is employed. Comparisons of the as-obtained adiabatic heating curves with theoretical evaluations are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arthur RM, Straube WL, Trobaugh JW, Moros EG (2005) Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperth 21(6):589–600CrossRef Arthur RM, Straube WL, Trobaugh JW, Moros EG (2005) Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperth 21(6):589–600CrossRef
Zurück zum Zitat Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C (2013) Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J Nanopart Res 15:1874CrossRef Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C (2013) Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J Nanopart Res 15:1874CrossRef
Zurück zum Zitat Basel MT et al (2012) Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomed 7:297–306CrossRef Basel MT et al (2012) Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomed 7:297–306CrossRef
Zurück zum Zitat Bekovic M, Hamler A (2010) Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field. IEEE Trans Magn 46(2):552–555CrossRef Bekovic M, Hamler A (2010) Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field. IEEE Trans Magn 46(2):552–555CrossRef
Zurück zum Zitat Bica D (1995) Preparation ofmagnetic fluids for various applications. Rom Rep Phys 47:265 Bica D (1995) Preparation ofmagnetic fluids for various applications. Rom Rep Phys 47:265
Zurück zum Zitat Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921CrossRef Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921CrossRef
Zurück zum Zitat Cui ZG, Piao JL, Rehman MUR, Ogawa R, Li P, Zhao Q, Kondo T, Inadera H (2014) Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 723:99–107CrossRef Cui ZG, Piao JL, Rehman MUR, Ogawa R, Li P, Zhao Q, Kondo T, Inadera H (2014) Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 723:99–107CrossRef
Zurück zum Zitat Fernandez GV et al (2013) Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys 46:312001CrossRef Fernandez GV et al (2013) Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys 46:312001CrossRef
Zurück zum Zitat Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635CrossRef Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635CrossRef
Zurück zum Zitat Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed 8(1):2521–2532 Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed 8(1):2521–2532
Zurück zum Zitat Huang HW, Liauth CT (2011) Therapeutical applications of heat in cancer therapy. J Med Biol Eng 32(1):1–11CrossRef Huang HW, Liauth CT (2011) Therapeutical applications of heat in cancer therapy. J Med Biol Eng 32(1):1–11CrossRef
Zurück zum Zitat Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111:07B306CrossRef Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111:07B306CrossRef
Zurück zum Zitat Landsberg R, De Rowe A, Katzir A, Shtabsky A, Fliss DM, Gil Z (2009) Laser-induced hyperthermia for treatment of granulation tissue growth in rats. Otolaryngol Head Neck 140(4):480–486CrossRef Landsberg R, De Rowe A, Katzir A, Shtabsky A, Fliss DM, Gil Z (2009) Laser-induced hyperthermia for treatment of granulation tissue growth in rats. Otolaryngol Head Neck 140(4):480–486CrossRef
Zurück zum Zitat Luchetti F, Canonico B, Felice MD, Burattini S, Battistelli M, Papa S, Falcieri E (2003) Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol Histopathol 18(4):1041–1052 Luchetti F, Canonico B, Felice MD, Burattini S, Battistelli M, Papa S, Falcieri E (2003) Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol Histopathol 18(4):1041–1052
Zurück zum Zitat Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321:1497–1500CrossRef Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321:1497–1500CrossRef
Zurück zum Zitat Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98:243119CrossRef Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98:243119CrossRef
Zurück zum Zitat Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. Nanoscince 1:60–88 Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. Nanoscince 1:60–88
Zurück zum Zitat Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef
Zurück zum Zitat Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc al. DA (2014) Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 27(12):2023–2035CrossRef Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc al. DA (2014) Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 27(12):2023–2035CrossRef
Zurück zum Zitat Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuncser V (2013) Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D 46:395501CrossRef Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuncser V (2013) Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D 46:395501CrossRef
Zurück zum Zitat Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef
Zurück zum Zitat Teran FJ et al (2012) Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett 101:062413CrossRef Teran FJ et al (2012) Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett 101:062413CrossRef
Zurück zum Zitat Vafaei S, Borca-Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des 92:842–856CrossRef Vafaei S, Borca-Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des 92:842–856CrossRef
Zurück zum Zitat Wang DC et al (2012) Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells. Asian Pac J Cancer Prev 13(7):3239–3245CrossRef Wang DC et al (2012) Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells. Asian Pac J Cancer Prev 13(7):3239–3245CrossRef
Zurück zum Zitat Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497CrossRef Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497CrossRef
Zurück zum Zitat Zhao Q et al (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2(1):113–121CrossRef Zhao Q et al (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2(1):113–121CrossRef
Metadaten
Titel
Approach for an improved experimental evaluation of the specific absorption rate in magnetic fluid hyperthermia
verfasst von
N. Iacob
G. Schinteie
P. Palade
V. Kuncser
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2015
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-2997-2

Weitere Artikel der Ausgabe 4/2015

Journal of Nanoparticle Research 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.