Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Approximation on parametric extension of Baskakov–Durrmeyer operators on weighted spaces

verfasst von: Md Nasiruzzaman, Nadeem Rao, Samar Wazir, Ravi Kumar

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present manuscript, we define a non-negative parametric variant of Baskakov–Durrmeyer operators to study the convergence of Lebesgue measurable functions and introduce these as α-Baskakov–Durrmeyer operators. We study the uniform convergence of these operators in weighted spaces.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In the field of mathematical analysis, Karl Weierstrass established an elegant theorem, the first Weierstrass approximation theorem, in 1885. This theorem has specially a big role in polynomial interpolation corresponding to every continuous function \(f(x)\) on interval \([a,b]\). The proof given by Weierstrass was rigorous and difficult to understand. In 1912, Bernstein [1] gave a simple proof of this theorem by introducing the Bernstein polynomials with the aid of the binomial distribution, hence for \(f\in C[0,1]\), we have
$$ B_{n}(f;x)=\sum_{k=0}^{n} \mathcal{S}_{n,k}(x)f \biggl(\frac{k}{n} \biggr),\quad n\in \mathbb{N}, 0\leq x\leq 1, $$
(1.1)
where \(\mathcal{S}_{n,k}(x)=\binom{n}{k}x^{k}(1-x)^{n-k}\). Many mathematicians researched in this direction and studied various modifications in several functional spaces using different error optimization techniques, i.e., Acar et al. [27], Acu et al. [8, 9], Barbosu [10], Agrawal et al. [11], Aral [12], Mursaleen et al. [1317], Srivastava et al. [1820]; for more details see also the references therein and [2130].

2 Construction of the α-Baskakov–Durrmeyer operators and estimation of their moments

Recently, Cai, Lian and Zhou [31] presented a new sequence of α-Bernstein operators with \(\alpha \in [-1,1]\). Later, Ali Aral et al. [32] gave a sequence of α-Bernstein operators as follows:
$$ L_{n,\alpha }(f;x)=\sum_{k=0}^{\infty }f \biggl(\frac{k}{n} \biggr) \mathcal{S}_{n,k}^{(\alpha )}(x), \quad n\in \mathbb{N}, x\in [0,\infty ), $$
(2.1)
where \(f\in C_{B}[0,\infty )\) which denotes the set of all continuous and bounded functions and
$$\begin{aligned} \mathcal{S}_{n,k}^{(\alpha )}(x) =&\frac{x^{k-1}}{(1+x)^{n+k-1}} \biggl\{ \frac{\alpha x}{1+x}\binom{n+k-1}{k}-(1-\alpha ) (1+x) \binom{n+k-3}{k-2} \\ &{}+(1-\alpha )y\binom{n+k-1}{k} \biggr\} \end{aligned}$$
with
$$ \binom{n-3}{-2}=\binom{n-2}{-1}=0. $$
The operators defined by (2.1) are restricted for continuous functions only. To approximate the functions in Lebesgue measurable space, we design a new sequence of operators:
$$ L_{n,\alpha }^{*}(f;x)=\sum _{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t)f(t)\,dt, $$
(2.2)
where \(\mathcal{Q}_{n,k}(t)=\frac{1}{B(k+1,n)} \frac{t^{k}}{(1+t)^{(n+k+1)}}\). Note that, simply in the case of \(\alpha =1\), the operators reduced to Baskakov–Durrmeyer type operators; for details see [33].
For \(r\in \{0,1,2,3,4\}\), we consider the test functions and central moments,
$$ e_{r}=t^{r} \quad \mbox{and} \quad \psi _{y}^{r}(t;x)=(t-x)^{r}. $$
(2.3)
Lemma 2.1
([31])
We have
$$\begin{aligned}& L_{n,\alpha }(e_{0};x) = 1, \\& L_{n,\alpha }(e_{1};x) = x+\frac{2}{n}(\alpha -1), \\& L_{n,\alpha }(e_{2};x) = x^{2}+\frac{4\alpha -3}{n}x+ \frac{1}{n^{2}}(n+4 \alpha -4). \end{aligned}$$
Lemma 2.2
Let the test functions \(e_{r}\) defined by (2.3), then, for all \(L_{n,\alpha }^{*}\), we have
$$\begin{aligned}& L_{n,\alpha }^{*}(e_{0};x) = 1, \\& L_{n,\alpha }^{*}(e_{1};x) = \biggl(\frac{n}{n-1}+ \frac{2(\alpha -1)}{n-1} \biggr)x+\frac{1}{n-1}, \\& L_{n,\alpha }^{*}(e_{2};x) = \biggl(\frac{n^{2}}{(n-2)(n-1)}+ \frac{n(4 \alpha -3)}{(n-2)(n-1)} \biggr)x^{2}+ \frac{(4n+10\alpha -10)}{(n-2)(n-1)}x+ \frac{2}{(n-2)(n-1)}. \end{aligned}$$
Proof
Take \(f=e_{0}\), then from Lemma 2.1, we have
$$\begin{aligned} L_{n,\alpha }^{*}(e_{0};x) =&\sum _{k=0}^{\infty }\mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t)\,dt \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{B(k+1,n)}{B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \\ =&1. \end{aligned}$$
For \(r=1\)
$$\begin{aligned} L_{n,\alpha }^{*}(e_{1};x) =&\sum _{k=0}^{\infty }\mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }t \mathcal{Q}_{n,k}(t)\,dt \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{B(k+2,n-1)}{B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+1)B(k+1,n)}{(n-1)B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+1)}{(n-1)} \\ =& \biggl(\frac{n}{n-1}+\frac{2(\alpha -1)}{n-1} \biggr)x+ \frac{1}{n-1}. \end{aligned}$$
For \(r=2\)
$$\begin{aligned} L_{n,\alpha }^{*}(e_{2};x) =&\sum _{k=0}^{\infty }\mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }t^{2} \mathcal{Q}_{n,k}(t) \,dt \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{B(k+3,n-2)}{B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+2)(k+1)B(k+1,n)}{(n-2)(n-1)B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+2)(k+1)}{(n-2)(n-1)} \\ =&\frac{n^{2}+n(4\alpha -3)}{(n-2)(n-1)}x^{2}+ \frac{(4n+10\alpha -10)}{(n-2)(n-1)}x+\frac{2}{(n-2)(n-1)}. \end{aligned}$$
 □
Lemma 2.3
Let the operators given by (2.2). Then we have
$$\begin{aligned}& L_{n,\alpha }^{*}\bigl(\psi _{x}^{0};x\bigr) = 1, \\& L_{n,\alpha }^{*}\bigl(\psi _{x}^{1};x\bigr) = \frac{2\alpha -1}{n-1}x+ \frac{1}{n-1}, \\& L_{n,\alpha }^{*}\bigl(\psi _{x}^{2};x\bigr) = \frac{2n+2(4\alpha -3)}{(n-2)(n-1)}x^{2}+ \frac{2n+2(5\alpha -3)}{(n-2)(n-1)}x+\frac{2}{(n-2)(n-1)}. \end{aligned}$$
Proof
In view of Lemmas 2.1 and 2.2 we can apply the linearity and easily complete the proof. □

3 Approximation in Korovkin and weighted Korovkin spaces

Take \(C_{B}(\mathbb{R^{+}})\) be the space of all bounded and continuous functions defined on the set \(\mathbb{R^{+}}\), where \(\mathbb{R^{+}}=[0, \infty )\) and a normed defined on \(C_{B}\) as
$$ \Vert f \Vert _{C_{B}}=\sup _{x\geq 0} \bigl\vert f(x) \bigr\vert . $$
Let
$$ E:=\biggl\{ f:x\in \mathbb{R^{+}} \text{ and } \lim _{x\rightarrow \infty } \biggl(\frac{f(x)}{1+x^{2}} \biggr)< \infty \biggr\} . $$
Lemma 3.1
For every \(f\in C[0,\infty )\cap E\) the operators \(L_{n,\alpha } ^{*}\) given in (2.2) are uniformly convergent to f on each compact subset of \([0,A]\), whenever \(A\in (0,\infty )\).
Proof
In the view of Korovkin-type property, it is enough to show that
$$ L_{n,\alpha }^{*}(e_{s};x)\rightarrow e_{s}(x), \quad \text{for } s=0,1,2. $$
From Lemma 2.2, obviously \(L_{n,\alpha }^{*}(e_{0};y)\rightarrow e_{0}(x)\) as \(n\rightarrow \infty \) and for \(s=1\)
$$ \lim_{n\rightarrow \infty } L_{n,\alpha }^{*}(e_{1};x)= \lim_{n\rightarrow \infty } \biggl(\frac{n+2(\alpha -1)}{n-1}x+ \frac{1}{n-1} \biggr)=e_{1}(x). $$
Similarly, we can prove for \(s=2\) that \(L_{n,\alpha }^{*}(e_{2};x) \rightarrow e_{2}\), which proves Proposition 3.1. □
Suppose \(C[0,\infty )\) is the set of all continuous functions and \(f\in C[0,\infty )\) with the weight function \(\sigma (x)=1+x^{2}\),
$$\begin{aligned}& \mathfrak{P}_{\sigma }(x) = \bigl\{ f: \bigl\vert f(x) \bigr\vert \leq \mathcal{M}_{f}\sigma (x), x\in [0,\infty ) \bigr\} , \\& \mathfrak{Q}_{\sigma }(x) = \bigl\{ f:f\in C[0,\infty )\cap \mathfrak{P}_{\sigma }(x) , x\in [0,\infty ) \bigr\} , \\& \mathfrak{Q}_{\sigma }^{m}(x) = \biggl\{ f:f\in \mathfrak{Q}_{\sigma }(x), \lim_{x\rightarrow \infty }\frac{f(x)}{\sigma (x)}=m, x\in [0,\infty ) \biggr\} , \end{aligned}$$
where the norm defined on weight function σ such as \(\Vert f \Vert _{\sigma }=\sup_{x\in [0,\infty )}\frac{ \vert f(x) \vert }{\sigma (x)}\) and the constant \(\mathcal{M}_{f}\) depends only on f.
Theorem 3.2
For all \(f\in \mathfrak{Q}_{\sigma }^{m}(x)\) the operators \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) defined by (2.2) satisfy
$$ \lim_{n\to \infty } \bigl\Vert L_{n,\alpha }^{*}(f;x)-f \bigr\Vert _{ \sigma }=0. $$
Proof
Take \(f(t) \in \mathfrak{Q}_{\sigma }^{m}(x)\) with \(x\in [0,\infty )\) and \(f(t)=e_{\nu }\) for \(\nu =0,1,2\). Then from the well-known Korovkin theorem \(L_{n,\alpha }^{*}(e_{\nu };x)\rightarrow x^{\nu }\), satisfying the properties of uniformly behaving as \(n \to \infty \). Since for \(\nu =0\), from Lemma 2.2 \(L_{n,\alpha }^{*}(e_{0};x)=1\), thus we have
$$ \bigl\Vert L_{n,\alpha }^{*} (e_{0};x ) -1 \bigr\Vert _{\sigma } =0. $$
(3.1)
For \(\nu =1\), we have
$$\begin{aligned} \bigl\Vert L_{n,\alpha }^{*} (e_{1};x ) -x \bigr\Vert _{\sigma } &= \sup_{x \in [0,\infty )}\frac{ \vert L _{n,\alpha }^{*}(e_{1};x)-x \vert }{1+x^{2}} \\ &= \biggl(\frac{n+2(\alpha -1)}{n-1}-1 \biggr)\sup_{x \in [0,\infty )} \frac{x}{1+x ^{2}}+\frac{1}{(n-1)}\sup_{x \in [0,\infty )} \frac{1}{1+x^{2}}. \end{aligned}$$
As \(n \to \infty \),
$$ \bigl\Vert L_{n,\alpha }^{*} (e_{1};x ) -x \bigr\Vert _{\sigma } =0. $$
(3.2)
In a similar way for \(\nu =2\),
$$\begin{aligned} & \bigl\Vert L_{n,\alpha }^{*} (e_{2};x ) -x^{2} \bigr\Vert _{\sigma } \\ &\quad = \sup_{y \in [0,\infty )}\frac{ \vert L_{n,\alpha }^{*}(e_{2};x)-x ^{2} \vert }{1+x^{2}} \\ &\quad = \biggl(\frac{n^{2}+n(4\alpha -3)}{(n-2)(n-1)}-1 \biggr) \sup_{x \in [0,\infty )} \frac{x^{2}}{1+x^{2}} \\ &\qquad {} + \biggl(\frac{4n+10\alpha -10}{(n-2)(n-1)} \biggr)\sup_{x \in [0, \infty )} \frac{x}{1+x^{2}}+ \frac{2}{(n-2)(n-1)}\sup_{x \in [0, \infty )} \frac{1}{1+x^{2}}, \\ & \bigl\Vert L_{n,\alpha }^{*} (e_{2};x ) -x^{2} \bigr\Vert _{\sigma } =0 \quad \text{when } n \to \infty. \end{aligned}$$
(3.3)
This completes the proof. □

4 Pointwise approximation properties by \(L_{n,\alpha }^{*}\)

Here, we study the order of approximation of a function f with the aid of positive linear operators \(L_{n,\alpha }^{*}(f;x)\) defined by (2.2) in terms of the classical modulus of continuity, the second-order modulus of continuity, Peetres K-functional and the Lipschitz class. A well-known property is the modulus of continuity of order one and of order two defined as follows. For \(\delta >0\) and \(f\in C[a,b]\) the classical modulus of continuity of order one is given by
$$ \omega (f;\delta )=\sup_{x_{1},x_{2}\in [a,b], |x_{1}-x_{2}|\leq \delta } \bigl\vert f(x_{1})-f(x _{2}) \bigr\vert , $$
and of order two it is given by
$$ \omega _{2}\bigl(f;\delta ^{\frac{1}{2}}\bigr)=\sup _{0< h< \delta ^{\frac{1}{2}}} \sup_{x\in \mathbb{R}^{+}} \bigl\vert f(x)-2f(x+h)+f(x+2h) \bigr\vert . $$
(4.1)
Let \(C_{B}[0,\infty )\) denote the space of all bounded and continuous functions on \([0,\infty )\) and
$$ C_{B}^{2}[0,\infty )=\bigl\{ \psi \in C_{B}[0, \infty ):\psi ^{\prime }, \psi ^{\prime \prime }\in C_{B}[0,\infty ) \bigr\} , $$
(4.2)
with the norm
$$ \Vert \psi \Vert _{C_{B}^{2}[0,\infty )}= \Vert \psi \Vert _{C_{B}[0,\infty )}+ \bigl\Vert \psi ^{\prime } \bigr\Vert _{C_{B}[0,\infty )}+ \bigl\Vert \psi ^{\prime \prime } \bigr\Vert _{C_{B}[0,\infty )}, $$
(4.3)
also
$$ \Vert \psi \Vert _{C_{B}[0,\infty )}=\sup_{x\in [0,\infty )} \bigl\vert \psi (x) \bigr\vert . $$
(4.4)
Lemma 4.1
([31])
Let \(\{P_{n}\}_{n\geq 1}\) be the sequence for the positive integer n with \(P_{n}(1;x)=1\). Then for every \(\psi \in C_{B}^{2}[0,\infty )\)
$$ \bigl\vert P_{n}(\psi ;x)-\psi (x) \bigr\vert \leq \bigl\Vert g' \bigr\Vert \sqrt{P_{n}\bigl((s-x)^{2};x \bigr)}+ \frac{1}{2} \bigl\Vert \psi '' \bigr\Vert P_{n}\bigl((s-x)^{2};x\bigr). $$
Lemma 4.2
([31])
For all \(f\in C[a,b]\) and \(h\in (0,\frac{b-a}{2} ) \), we have the following inequalities:
$$\begin{aligned} (\mathrm{i})&\quad \Vert f_{h}-f \Vert \leq \frac{3}{4} \omega _{2}(f,h), \\ (\mathrm{ii})&\quad \bigl\Vert f_{h}'' \bigr\Vert \leq \frac{3}{2h^{2}}\omega _{2}(f,h), \end{aligned}$$
where \(f_{h}\) denotes the second-order Steklov function.
Theorem 4.3
For all \(f\in C_{B}[0,\infty )\) and \(x\in [0,a]\), \(a>0\) we have
$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq 2\omega \bigl(f; \sqrt{\varTheta _{n}(x)} \bigr), $$
where \(\varTheta _{n}(x)=L_{n,\alpha }^{*}(\psi _{x}^{2};x)\) and \(L_{n,\alpha }^{*}(\psi _{x}^{2};x)\) is defined by Lemma 2.3.
Proof
In view of the classical modulus of continuity, we have
$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \sum _{k=0}^{\infty }\mathcal{S} _{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \bigl\vert f(t)-f(x) \bigr\vert \,dt \\ \leq & \Biggl\{ 1+\frac{1}{\delta }\sum_{k=0}^{\infty } \mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert \,dt \Biggr\} \omega (f;\delta ). \end{aligned}$$
In the light of the Cauchy–Schwartz inequality, we get
$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \Biggl\{ 1+\frac{1}{\delta } \Biggl(\sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty } \mathcal{Q}_{n,k}(t) (t-x)^{2}\,dt \Biggr)^{\frac{1}{2}} \Biggr\} \omega (f;\delta ) \\ =& \biggl\{ 1+\frac{1}{\delta } \sqrt{L_{n,\alpha }^{*} \bigl(\psi _{x}^{2};x\bigr)} \biggr\} \omega (f;\delta ). \end{aligned}$$
Choosing \(\delta = (\varTheta _{n}(x) )^{\frac{1}{2}}=\sqrt{ L_{n,\alpha }^{*}(\psi _{x}^{2};x)}\), we arrive at the desired result. □
Theorem 4.4
For every \(f\in C[0,a]\), \(a>0\) the operators \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) defined by (2.2) satisfy
$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq \frac{2}{a} \Vert f \Vert \delta ^{2}+ \frac{3}{4} \bigl(a+2+h^{2}\bigr)\omega _{2}(f;\delta ), $$
where \(\delta = (\varTheta _{n}(x) )^{\frac{1}{2}}\) is defined by Theorem 4.3 and \(\omega _{2}(f;\delta )\) is by (4.1) equipped with the norm \(\Vert f \Vert =\max_{x\in [a,b]}|f(x)|\).
Proof
Consider \(f_{h}\) is the Steklov function define in Lemma 4.2. Using Lemma 2.2, we obtain
$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \bigl\vert L_{n,\alpha }^{*}(f-f_{h};x) \bigr\vert + \bigl\vert f _{h}-f(x) \bigr\vert + \bigl\vert L_{n,\alpha }^{*}(f_{h};x)-f_{h}(x) \bigr\vert \\ \leq & 2 \Vert f_{h}-f \Vert + \bigl\vert L_{n,\alpha }^{*}(f_{h};x)-f_{h}(x) \bigr\vert . \end{aligned}$$
In view of the fact that \(f_{h}\in C^{2}[0,a]\) and using Lemma 4.1, we obtain
$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq \bigl\Vert f_{h}' \bigr\Vert \sqrt {L_{n,\alpha }^{*}\bigl((e _{1}-x)^{2};x \bigr)}+\frac{1}{2} \bigl\Vert f''_{h} \bigr\Vert L_{n,\alpha }^{*}\bigl((e_{1}-x)^{2};x \bigr). $$
(4.5)
From the Landau inequality and Lemma 4.2, we have
$$\begin{aligned} \Vert f_{h} \Vert \leq &\frac{2}{a} \Vert f_{h} \Vert +\frac{a}{2} \bigl\Vert f_{h}'' \bigr\Vert \\ \leq &\frac{2}{a} \Vert f_{h} \Vert +\frac{3a}{4} \frac{1}{h^{2}}\omega _{2}(f;h). \end{aligned}$$
On choosing \(\delta = (\varTheta _{n}(x) )^{\frac{1}{4}}\), one has
$$ \bigl\vert L_{n,\alpha }^{*}(f_{h};x)-f_{h}(x) \bigr\vert \leq \frac{2}{a} \Vert f \Vert h^{2}+ \frac{3a}{4}\omega _{2}(f;h)+\frac{3}{4}h^{2} \omega _{2}(f;h). $$
(4.6)
Combining (4.6), (4.5) and Lemma 4.2, we obtain the required result. □
Theorem 4.5
Let \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) be the operators defined by (2.2). Then, for every \(f\in C_{B}^{2}[0,\infty )\),
$$ \lim_{n\rightarrow \infty }(n-1) \bigl(L_{n,\alpha }^{*}(f;x)-f(x) \bigr)=\bigl(1+2 \alpha x-x^{2}\bigr)f'(x)+2 \bigl(x+x^{2}\bigr)f''(x), $$
uniformly for \(0\leq x\leq a\), \(a>0\).
Proof
Let \(x_{0}\in [0,\infty )\) be a fixed number; all \(x\in [0,\infty )\). Then using Taylor’s series, we have
$$ f(x)-f(x_{0})=(x-x_{0})f'(x_{0})+ \frac{1}{2}(x-x_{0})^{2}f''(x_{0})+ \varphi (x,x_{0}) (x-x_{0})^{2}, $$
(4.7)
where \(\varphi (x,x_{0})\in C_{B}[0,\infty )\) and \(\lim_{x\rightarrow x_{0}}\varphi (x,x_{0})=0\).
By applying the operators \(L_{n,\alpha }^{*}\) on (4.7), we deduce
$$\begin{aligned} L_{n,\alpha }^{*}(f;x_{0})-f(x_{0}) =&f'(x_{0})L_{n,\alpha }^{*}(e _{1}-x_{0};x_{0})+\frac{1}{2}L_{n,\alpha }^{*} \bigl((x-x_{0})^{2};x_{0}\bigr)f''(x _{0}) \\ &{}+L_{n,\alpha }^{*}\bigl(\varphi (x,x_{0}) (x-x_{0})^{2}\bigr). \end{aligned}$$
(4.8)
In view of the Cauchy–Schwartz inequality for the last term of Eq. (4.8), we get
$$ (n-1)L_{n,\alpha }^{*}\bigl(\varphi (x,x_{0}) (t-x_{0})^{2}\bigr)\leq (n-1)^{2}\sqrt{L _{n,\alpha }^{*} \bigl((e_{1}-x_{0})^{2}\bigr)L_{n,\alpha }^{*} \bigl(\varphi ^{2}(x,x _{0})\bigr)}. $$
(4.9)
We have
$$\begin{aligned}& \lim_{n\rightarrow \infty }(n-1) \bigl(L_{n,\alpha }^{*}(e_{0}-x _{0};x) \bigr) = \bigl(1+2\alpha x-x^{2} \bigr)f'(x), \\& \lim_{n\rightarrow \infty }(n-1) \bigl(L_{n,\alpha }^{*}\bigl((e _{0}-x_{0})^{2};x\bigr) \bigr) = 2 \bigl(x+x^{2}\bigr)f''(x), \\& \lim_{n\rightarrow \infty } \bigl(L_{n,\alpha }^{*} \bigl((e_{0}-x _{0})^{4};x\bigr) \bigr) = 0. \end{aligned}$$
This completes the proof. □
Now here we estimate the rate of convergence in terms of the usual Lipschitz class \(\operatorname{Lip}_{M}(\nu )\). Let \(f\in C[0,a )\), \(a>0\) and M be a positive constant, and, for any \(\nu \in (0,1]\), the Lipschitz class \(\operatorname{Lip}_{M}(\nu )\) is as follows:
$$ \operatorname{Lip}_{M}(\nu )= \bigl\{ f: \bigl\vert f(\varsigma _{1})-f(\varsigma _{2}) \bigr\vert \leq M \vert \varsigma _{1}-\varsigma _{2} \vert ^{\nu }\ \bigl( \varsigma _{1}, \varsigma _{2}\in [ 0,\infty)\bigr) \bigr\} . $$
(4.10)
Theorem 4.6
Let \(f\in \operatorname{Lip}_{M}(\nu )\) with \(M>0\) and \(0<\nu \leq 1\). Then the operators \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) satisfy
$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq M \bigl( \varTheta _{n}(x) \bigr) ^{\frac{\nu }{2}}, $$
where \(n>2\) and \(\varTheta _{n}(x)\) defined by Theorem 4.3.
Proof
From the Hölder inequality and (4.10), we conclude
$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \bigl\vert L_{n,\alpha }^{*}\bigl(f(t)-f(x);x\bigr) \bigr\vert \\ \leq &L_{n,\alpha }^{*} \bigl( \bigl\vert f(t)-f(x) \bigr\vert ;x \bigr) \\ \leq & ML_{n,\alpha }^{*} \bigl( \vert t-x \vert ^{\nu };x \bigr) . \end{aligned}$$
Hence
$$\begin{aligned}& \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \\& \quad \leq M \sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert ^{\nu }\,dt \\& \quad \leq M \sum_{k=0}^{\infty } \bigl( \mathcal{S}_{n,k}^{( \alpha )}(x) \bigr)^{\frac{2-\nu }{2}} \\& \qquad {} \times \bigl(\mathcal{S}_{n,k}^{(\alpha )}(x) \bigr)^{\frac{ \nu }{2}} \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert ^{\nu }\,dt \\& \quad \leq M \Biggl(\sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t)\,dt \Biggr)^{\frac{2-\nu }{2}} \\& \qquad {} \times \Biggl(\sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert ^{2} \,dt \Biggr) ^{\frac{\nu }{2}} \\& \quad = M \bigl(L_{n,\alpha }^{*}\bigl(\psi _{x}^{2};x \bigr) \bigr)^{\frac{ \nu }{2}}. \end{aligned}$$
This completes the proof. □
Theorem 4.7
For all \(\psi \in C_{B}^{2}{}[ 0,\infty )\) and \(n>2\),
$$ \bigl\vert L_{n,\alpha }^{*}(\psi ;x)-\psi (x) \bigr\vert \leq \biggl(\Delta _{n}(x)+\frac{ \varTheta _{n}(x)}{2} \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )}, $$
where \(\Delta _{n}(x)= (\frac{2\alpha -1}{n-1}x+\frac{1}{n-1} )\) and \(\varTheta _{n}(x)\) is defined by Theorem 4.3.
Proof
Let \(\psi \in C_{B}^{2}(\mathbb{R}^{+})\); for all \(\varphi \in (x,t)\) a Taylor series expansion is
$$ \psi (t)=\frac{(t-x)^{2}}{2}\psi ^{\prime \prime }(\varphi )+(t-x) \psi ^{\prime }(x)+\psi (x). $$
On applying \(L_{n,\alpha }^{*}\), using linearity,
$$ L_{n,\alpha }^{*}(\psi ;x)-\psi (x)=\psi ^{\prime }(x)L_{n,\alpha } ^{*} \bigl( (t-x);x \bigr) + \frac{\psi ^{\prime \prime }(\varphi )}{2}L_{n,\alpha }^{*} \bigl( (t-x)^{2};x \bigr) , $$
which implies that
$$\begin{aligned}& \bigl\vert L_{n,\alpha }^{*}(\psi ;x)-\psi (x) \bigr\vert \\& \quad \leq \biggl(\frac{2\alpha -1}{n-1}x+\frac{1}{n-1} \biggr) \bigl\Vert \psi ^{\prime } \bigr\Vert _{C_{B}{}[ 0,\infty )} \\& \qquad {}+ \biggl\{ \frac{2n+2(4\alpha -3)}{(n-2)(n-1)}x^{2}+\frac{2n+2(5 \alpha -3)}{(n-2)(n-1)}x+ \frac{2}{(n-2)(n-1)} \biggr\} \frac{ \Vert \psi ^{\prime \prime } \Vert _{C_{B}{}[ 0,\infty )}}{2}. \end{aligned}$$
From (4.3) we have \(\Vert \psi ^{\prime } \Vert _{C_{B}{}[ 0,\infty )}\leq \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )}\), \(\Vert \psi ^{\prime \prime } \Vert _{C_{B}{}[ 0,\infty )}\leq \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )}\).
$$\begin{aligned}& \bigl\vert L_{n,\alpha }^{*}(\psi ;x)-\psi (x) \bigr\vert \\& \quad \leq \biggl(\frac{2\alpha -1}{n-1}x+\frac{1}{n-1} \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \\& \qquad {}+ {\biggl\{ } \frac{2n+2(4\alpha -3)}{(n-2)(n-1)}x^{2}+\frac{2n+2(5 \alpha -3)}{(n-2)(n-1)}x+ \frac{2}{(n-2)(n-1)} {\biggr\} } \frac{ \Vert \psi \Vert _{{}[ 0,\infty )}}{2}. \end{aligned}$$
This completes the proof. □
In 1968 [34] for investigating the interpolation between two Banach spaces Peetre introduced the K-functional by
$$ K_{2}(f;\delta )=\inf_{C_{B}^{2}{}[ 0,\infty )} \bigl\{ \bigl( \Vert f-\psi \Vert _{C_{B}{}[ 0,\infty )}+\delta \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \bigr) :\psi \in C_{B} ^{2}{}[ 0,\infty ) \bigr\} $$
(4.11)
and a positive constant \(\mathfrak{D}\) exists such that \(K_{2}(f; \delta )\leq \mathfrak{D} \omega _{2}(f;\delta ^{\frac{1}{2}})\) with \(\delta >0\) and \(\omega _{2}(f;\delta )\) is the second-order modulus of continuity.
Theorem 4.8
Suppose \(C_{B}{}[ 0,\infty )\) is the set of all bounded and continuous functions on \({}[ 0,\infty )\). Then for every \(f\in C_{B}{}[ 0,\infty )\)
$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq 2 \mathfrak{D} \bigl\{ \omega _{2} \bigl( f;\sqrt{\mathfrak{K}_{n}(x)} \bigr) + \min \bigl( 1,\mathfrak{K}_{n}(x) \bigr) \Vert f \Vert _{C_{B}{}[ 0,\infty )}\bigr\} , $$
where \(\mathfrak{K}_{n}(x)=\frac{2\Delta _{n}(x)+\varTheta _{n}(x)}{4}\) is defined by Theorem 4.7.
Proof
In the light of results obtained by Theorem 4.7, we prove the desired theorem; hence
$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq& \bigl\vert L_{n,\alpha }^{*}(f- \psi ;x) \bigr\vert + \bigl\vert f(x)-\psi (x) \bigr\vert + \bigl\vert L_{n,\alpha }^{*}(\psi ;x)- \psi (x) \bigr\vert \\ \leq& 2 \Vert f-\psi \Vert _{C_{B}{}[ 0,\infty )}+ \biggl(\frac{ \varTheta _{n}(x)}{2}+ \Delta _{n}(x) \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \\ =& 2 \biggl( \Vert f-\psi \Vert _{C_{B}{}[ 0,\infty )}+ \biggl(\frac{\varTheta _{n}(x)}{4}+ \frac{\Delta _{n}(x)}{2} \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \biggr). \end{aligned}$$
If we take the infimum over all \(\psi \in C_{B}^{2}{}[ 0,\infty )\) and we use (4.11), we get
$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq 2K_{2} \biggl( f; \biggl(\frac{ \varTheta _{n}(x)}{4}+\frac{\Delta _{n}(x)}{2} \biggr) \biggr). $$
Now from [35] we use the relation for an absolute constant \(\mathfrak{D}>0\)
$$ K_{2}(f;\delta )\leq \mathfrak{D}\bigl\{ \omega _{2}(f; \sqrt{\delta })+ \min (1,\delta ) \Vert f \Vert \bigr\} . $$
This completes the proof. □

5 Conclusion and observations

The manuscript parametric variant of Baskakov–Durrmeyer operators is a new extension of Baskakov Durrmeyer type operators. In the present investigation in our manuscript in order to get uniform convergence for the operators of the α-type extended version we study the order of approximation, the rate of convergence, the Korovkin-type, the weighted Korovkin-type approximation theorems, Peetres K-functional, Lipschitz functions and a set of direct theorems. It must be noted that we have more modeling flexibility when adding the parameter α to the Baskakov–Durrmeyer operators.

Competing interests

All authors of this manuscript declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bernstein, S.N.: Démonstration du Théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 13(2), 1–2 (1912–1913) Bernstein, S.N.: Démonstration du Théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 13(2), 1–2 (1912–1913)
2.
Zurück zum Zitat Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, Article ID 98 (2016) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, Article ID 98 (2016) MathSciNetCrossRef
3.
Zurück zum Zitat Acar, T., Agrawal, P.N., Kumar, A.S.: On a modification of \((p,q)\)-Szász–Mirakyan operators. Complex Anal. Oper. Theory 12(1), 155–167 (2018) MathSciNetCrossRef Acar, T., Agrawal, P.N., Kumar, A.S.: On a modification of \((p,q)\)-Szász–Mirakyan operators. Complex Anal. Oper. Theory 12(1), 155–167 (2018) MathSciNetCrossRef
4.
Zurück zum Zitat Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018) MathSciNetCrossRef
5.
Zurück zum Zitat Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018) MathSciNetMATH Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018) MathSciNetMATH
6.
Zurück zum Zitat Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 655–662 (2018) MathSciNetCrossRef Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 655–662 (2018) MathSciNetCrossRef
7.
Zurück zum Zitat Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018) MathSciNetCrossRef Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018) MathSciNetCrossRef
8.
Zurück zum Zitat Acu, A.M., Muraru, C.V.: Approximation properties of bivariate extension of q-Bernstein–Schurer–Kantorovich operators. Results Math. 67(3–4), 265–279 (2015) MathSciNetCrossRef Acu, A.M., Muraru, C.V.: Approximation properties of bivariate extension of q-Bernstein–Schurer–Kantorovich operators. Results Math. 67(3–4), 265–279 (2015) MathSciNetCrossRef
9.
Zurück zum Zitat Acu, A.M.: Stancu–Schurer–Kantorovich operators based on q-integers. Appl. Math. Comput. 259, 896–907 (2015) MathSciNetMATH Acu, A.M.: Stancu–Schurer–Kantorovich operators based on q-integers. Appl. Math. Comput. 259, 896–907 (2015) MathSciNetMATH
10.
Zurück zum Zitat Bărbosu, D.: Some applications of Shisha–Mond theorem. Creative Math. Inform. 23(2), 141–146 (2014) MathSciNetMATH Bărbosu, D.: Some applications of Shisha–Mond theorem. Creative Math. Inform. 23(2), 141–146 (2014) MathSciNetMATH
11.
Zurück zum Zitat Agrawal, P.N., Kumar, D., Araci, S.: Linking of Bernstein–Chlodowsky and Szász–Appell–Kantorovich type operators. J. Nonlinear Sci. Appl. 10(6), 3288–3302 (2017) MathSciNetCrossRef Agrawal, P.N., Kumar, D., Araci, S.: Linking of Bernstein–Chlodowsky and Szász–Appell–Kantorovich type operators. J. Nonlinear Sci. Appl. 10(6), 3288–3302 (2017) MathSciNetCrossRef
12.
Zurück zum Zitat Aral, A., Acar, T.: Weighted approximation by new Bernstein–Chlodowsky–Gadjiev operators. Filomat 27(2), 371–380 (2013) MathSciNetCrossRef Aral, A., Acar, T.: Weighted approximation by new Bernstein–Chlodowsky–Gadjiev operators. Filomat 27(2), 371–380 (2013) MathSciNetCrossRef
13.
Zurück zum Zitat Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) & [MR3377604], Appl. Math. Comput. 278, 70–71 (2016) MathSciNetMATH Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) & [MR3377604], Appl. Math. Comput. 278, 70–71 (2016) MathSciNetMATH
14.
Zurück zum Zitat Mursaleen, M., Nasiruzzaman, M., Nurgali, A.: Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, Article ID 249 (2015) MathSciNetCrossRef Mursaleen, M., Nasiruzzaman, M., Nurgali, A.: Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, Article ID 249 (2015) MathSciNetCrossRef
15.
Zurück zum Zitat Mursaleen, M., Khan, F., Khan, A.: Approximation by Kantorovich type q-Bernstein–Stancu operators. Complex Anal. Oper. Theory 11(1), 85–107 (2017) MathSciNetCrossRef Mursaleen, M., Khan, F., Khan, A.: Approximation by Kantorovich type q-Bernstein–Stancu operators. Complex Anal. Oper. Theory 11(1), 85–107 (2017) MathSciNetCrossRef
16.
Zurück zum Zitat Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018) MathSciNetMATH Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018) MathSciNetMATH
17.
Zurück zum Zitat Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, Article ID 287 (2018) CrossRef Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, Article ID 287 (2018) CrossRef
18.
Zurück zum Zitat Srivastava, H.M., Jena, B.B., Paikray, S.K., Misra, U.K.: A certain class of weighted statistical convergence and associated Korovkin-type approximation theorems involving trigonometric functions. Math. Methods Appl. Sci. 41, 671–683 (2018) MathSciNetMATH Srivastava, H.M., Jena, B.B., Paikray, S.K., Misra, U.K.: A certain class of weighted statistical convergence and associated Korovkin-type approximation theorems involving trigonometric functions. Math. Methods Appl. Sci. 41, 671–683 (2018) MathSciNetMATH
19.
Zurück zum Zitat Srivastava, H.M., Mursaleen, M., Alotaibi, A., Nasiruzzaman, M., Al-Abied, A.: Some approximation results involving the q-Szász–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40, 5437–5452 (2017) MathSciNetCrossRef Srivastava, H.M., Mursaleen, M., Alotaibi, A., Nasiruzzaman, M., Al-Abied, A.: Some approximation results involving the q-Szász–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40, 5437–5452 (2017) MathSciNetCrossRef
23.
Zurück zum Zitat Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approyimation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016) MathSciNetCrossRef Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approyimation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016) MathSciNetCrossRef
24.
Zurück zum Zitat Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017) MathSciNetCrossRef Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017) MathSciNetCrossRef
25.
Zurück zum Zitat Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018) MathSciNetCrossRef Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018) MathSciNetCrossRef
26.
Zurück zum Zitat Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017) MathSciNetCrossRef
27.
Zurück zum Zitat Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018) MathSciNetCrossRef
28.
Zurück zum Zitat Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein–Durrmeyer operators. J. Inequal. Appl. 2018, Article ID 104 (2018) MathSciNetCrossRef Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein–Durrmeyer operators. J. Inequal. Appl. 2018, Article ID 104 (2018) MathSciNetCrossRef
29.
Zurück zum Zitat Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q)\)-gamma function and related approximation theorems. Results Math. 73, Article 9 (2018) MathSciNetCrossRef Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q)\)-gamma function and related approximation theorems. Results Math. 73, Article 9 (2018) MathSciNetCrossRef
30.
Zurück zum Zitat Edely, H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23, 1382–1387 (2010) MathSciNetCrossRef Edely, H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23, 1382–1387 (2010) MathSciNetCrossRef
32.
Zurück zum Zitat Ali, A., Erbay, H.: Parametric generalization of Baskakov operaors. Math. Commun. 24, 119–131 (2019) MathSciNet Ali, A., Erbay, H.: Parametric generalization of Baskakov operaors. Math. Commun. 24, 119–131 (2019) MathSciNet
33.
Zurück zum Zitat Erencin, A.: Durrmeyer type modification of generalized Baskakov operators. Appl. Math. Comput. 218(3), 4384–4390 (2011) MathSciNetMATH Erencin, A.: Durrmeyer type modification of generalized Baskakov operators. Appl. Math. Comput. 218(3), 4384–4390 (2011) MathSciNetMATH
34.
Zurück zum Zitat Peetre, J.: A Theory of Interpolation of Normed Spaces. Noteas de Mathematica, vol. 39. Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas, Rio de Janeiro (1968) MATH Peetre, J.: A Theory of Interpolation of Normed Spaces. Noteas de Mathematica, vol. 39. Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas, Rio de Janeiro (1968) MATH
35.
Zurück zum Zitat Ciupa, A.: A class of integral Favard–Szász type operators. Stud. Univ. Babeş–Bolyai, Math. 40(1), 39–47 (1995) MathSciNetMATH Ciupa, A.: A class of integral Favard–Szász type operators. Stud. Univ. Babeş–Bolyai, Math. 40(1), 39–47 (1995) MathSciNetMATH
Metadaten
Titel
Approximation on parametric extension of Baskakov–Durrmeyer operators on weighted spaces
verfasst von
Md Nasiruzzaman
Nadeem Rao
Samar Wazir
Ravi Kumar
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2055-1

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe