Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Approximations of the generalized-Euler-constant function and the generalized Somos’ quadratic recurrence constant

verfasst von: Aimin Xu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we provide an estimate for approximating the generalized-Euler-constant function \(\gamma (z)=\sum_{k=1}^{\infty }z ^{k-1} (\frac{1}{k}-\ln \frac{k+1}{k} )\) by its partial sum \(\gamma _{N-1}(z)\) when \(0< z<1\). We obtain an asymptotic expansion for the generalized-Euler-constant function and show that the coefficients of the asymptotic expansion are explicitly expressed by the Eulerian fractions. Also, we find a recurrence relation for those coefficients. Using its relation with the generalized-Euler-constant function, we establish two inequalities for the generalized Somos’ quadratic recurrence constant. Moreover, two asymptotic expansions for the natural logarithm of the generalized Somos quadratic recurrence constant are presented.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Somos’ quadratic recurrence constant σ arises in the study of the asymptotic behavior of the sequence (see [8, p. 446] and [21, 27]):
$$\begin{aligned} g_{n}\sim{}& \frac{\sigma ^{2^{n}}}{n} \biggl(1+ \frac{2}{n}-\frac{1}{n^{2}}+\frac{4}{n ^{3}}- \frac{21}{n^{4}}+\frac{138}{n^{5}}-\frac{1091}{n^{6}}+ \frac{10\text{,}088}{n ^{7}}-\frac{106\text{,}918}{n^{8}} \\ &{}+\frac{1\text{,}279\text{,}220}{n^{9}}-\frac{17\text{,}070\text{,}418}{n^{10}}+\frac{251\text{,}560\text{,}472}{n ^{11}}- \frac{4\text{,}059\text{,}954\text{,}946}{n^{12}}+\cdots \biggr)^{-1}, \end{aligned}$$
(1.1)
where \(g_{n}\) are recursively defined by
$$\begin{aligned} g_{0}=1,\qquad g_{n}=ng_{n-1}^{2},\quad n=1,2,\ldots, \end{aligned}$$
(1.2)
with the first few terms
$$\begin{aligned} g_{0}=1,\qquad g_{1}=1,\qquad g_{2}=2,\qquad g_{3}=12, \qquad g_{4}=576,\qquad g_{5}=1 \text{,}658\text{,}880,\ldots . \end{aligned}$$
The constant σ is usually defined by
$$\begin{aligned} \sigma =\sqrt{1\sqrt{2\sqrt{3\sqrt{4\cdots }}}}=\prod _{k=1} ^{\infty }k^{\frac{1}{2^{k}}}=1.66168794\cdots \end{aligned}$$
(1.3)
or
$$\begin{aligned} \sigma =\exp \biggl\{ - \int _{0}^{1}\frac{1-x}{(2-x)\ln x}\,dx \biggr\} = \exp \biggl\{ - \int _{0}^{1} \int _{0}^{1}\frac{x}{(2-xy)\ln (xy)}\,dx\,dy \biggr\} . \end{aligned}$$
(1.4)
See [9, 2022]. The constant σ appears in many important problems in pure and applied analysis and it has been investigated by a large number of researchers [3, 5, 9, 10, 12, 13, 15, 1719, 25, 30].
Recently, Sondow and Hadjicostas [25] introduced and studied the generalized-Euler-constant function \(\gamma (z)\) defined by the power series
$$\begin{aligned} \gamma (z)=\sum_{k=1}^{\infty }z^{k-1} \biggl(\frac{1}{k}-\ln \frac{k+1}{k} \biggr) \end{aligned}$$
(1.5)
when \(|z|\leq 1\). There exist integral representations for the function
$$\begin{aligned} \gamma (z)= \int _{0}^{1}\frac{1-x+\ln x}{(1-xz)\ln x}\,dx=- \int _{0}^{1} \int _{0}^{1}\frac{1-x}{(1-xyz)\ln (xy)}\,dx\,dy. \end{aligned}$$
(1.6)
Its values include Euler’s constant \(\gamma =\gamma (1)\) and the “alternating Euler constant” \(\log \frac{4}{\pi }=\gamma (-1)\), see for example [23, 24]. In particular, at \(z=1/2\), the function takes the value
$$\begin{aligned} \gamma \biggl(\frac{1}{2} \biggr)=2\ln \frac{2}{\sigma }, \end{aligned}$$
(1.7)
which is equivalent to
$$\begin{aligned} \sigma =2\exp \biggl\{ -\frac{1}{2}\gamma \biggl( \frac{1}{2} \biggr) \biggr\} . \end{aligned}$$
(1.8)
Mortici [15] proved that, for \(n\geq 1\), it follows that
$$\begin{aligned} \frac{270(n+1)}{2^{n}(270n^{3}+1530n^{2}+1065n+6293)}< \gamma \biggl(\frac{1}{2} \biggr)- \gamma _{n} \biggl(\frac{1}{2} \biggr)< \frac{18}{2^{n}(18n^{2}+84n-13)}, \end{aligned}$$
(1.9)
where the partial sum of \(\gamma (z)\)
$$\begin{aligned} \gamma _{n}(z)=\sum_{k=1}^{n} z^{k-1} \biggl(\frac{1}{k}-\ln \frac{k+1}{k} \biggr),\quad \vert z \vert \leq 1. \end{aligned}$$
Lu and Song [13] improved Mortici’s estimate and proved that, for \(n\geq 1\),
$$\begin{aligned} \frac{690n^{2}+3524n+145}{6(2^{n})(n+1)^{2}(115n^{2}+894n+779)}&< \gamma \biggl(\frac{1}{2} \biggr)-\gamma _{n} \biggl(\frac{1}{2} \biggr) \\ &< \frac{48n+127}{3(2^{n})(16n+85)(n+1)^{2}}. \end{aligned}$$
(1.10)
You and Chen [30] improved these inequalities by using continued fraction. Very recently, Chen and Han [5] obtained new lower bounds for \(\gamma (1/2)-\gamma _{n}(1/2)\):
$$\begin{aligned} &\frac{1}{2^{n}} \biggl(\frac{1}{(n+1)^{2}}- \frac{8}{3(n+1)^{3}}+ \frac{23}{2(n+1)^{4}}-\frac{332}{5(n+1)^{5}}+ \frac{479}{(n+1)^{6}}- \frac{29\text{,}024}{7(n+1)^{7}} \biggr) \\ & \quad< \gamma \biggl(\frac{1}{2} \biggr)-\gamma _{n} \biggl( \frac{1}{2} \biggr) \\ &\quad < \frac{1}{2^{n}} \biggl(\frac{1}{(n+1)^{2}}- \frac{8}{3(n+1)^{3}}+ \frac{23}{2(n+1)^{4}}-\frac{332}{5(n+1)^{5}}+ \frac{479}{(n+1)^{6}} \biggr). \end{aligned}$$
(1.11)
In their paper, Chen and Han pointed out that the lower bound in (1.11) is sharper than the one in (1.10) for \(n\geq 24\), and the upper bound in (1.11) is sharper than the one in (1.10) for \(n\geq 18\). Moreover, they gave the following asymptotic expansion:
$$\begin{aligned} &\gamma \biggl(\frac{1}{2} \biggr)-\gamma _{n} \biggl(\frac{1}{2} \biggr) \\ &\quad \sim \frac{1}{2^{n}} \biggl\{ \frac{a_{2}}{(n+1)^{2}}+\frac{a _{3}}{(n+1)^{3}}+ \frac{a_{4}}{(n+1)^{4}}+\frac{a_{5}}{(n+1)^{5}}+\frac{a _{6}}{(n+1)^{6}}+\cdots \biggr\} ,\quad n\rightarrow \infty \end{aligned}$$
(1.12)
with a recursive formula for successively determining the coefficients
$$\begin{aligned} \begin{aligned} &a_{2}=1, \\ &a_{k}=\frac{2(-1)^{k}}{k}+\sum_{j=2}^{k-1}(-1)^{k-j} \binom{k-1}{k-j}a_{j},\quad k\geq 3. \end{aligned} \end{aligned}$$
(1.13)
Recently, there have been several interesting works related to approximations of Euler’s constant \(\gamma =\gamma (1)\), see for example [4, 16, 28] and the references therein. Also, some works related to approximations of \(\gamma (z)\) at special values \(1/2\), \(1/3\), and \(1/4\) appear in [3, 5, 1315, 29, 30]. Motivated by these, the first aim of this paper is to give an approximation for \(\gamma (z)\) when \(0< z<1\). Specifically, we give a general inequality for the error bound of \(\gamma (z)-\gamma _{N-1}(z)\). The second aim is to establish an asymptotic expansion for \(\gamma (z)- \gamma _{N-1}(z)\) whose coefficients can be computed explicitly and recursively. In particular, we generalize inequality (1.11) and asymptotic expansion (1.12) due to Chen and Han. Using the relation between the generalized Somos’ quadratic recurrence constant and the generalized-Euler-constant function established by Sondow and Hadjicostas [25], we find approximate estimates for the generalized Somos’ quadratic recurrence constant and its natural logarithm, respectively. Moreover, two asymptotic expansions for the natural logarithm of the generalized Somos’ quadratic recurrence constant are presented.

2 Preliminaries

Let us recall the following classical result [2, 7, 11]:
$$\begin{aligned} \sum_{k=0}^{\infty }k^{n}z^{k}= \frac{A_{n}(z)}{(1-z)^{n+1}},\quad \vert z \vert < 1, \end{aligned}$$
(2.1)
where \(A_{n}(z)\) is the Eulerian polynomial of degree n, and it can be defined by the exponential generating function
$$\begin{aligned} \sum_{n=0}^{\infty }A_{n}(z) \frac{t^{n}}{n!}= \frac{1-z}{1-ze^{t(1-z)}}. \end{aligned}$$
(2.2)
By (2.2), \(A_{n}(x)\) may be explicitly written as
$$\begin{aligned} \begin{aligned} &A_{0}(z)=1, \\ &A_{n}(z)=\sum_{k=1}^{n}A(n,k)z^{k},\quad n\geq 1, \end{aligned} \end{aligned}$$
(2.3)
where \(A(n,k)\) are known as the Eulerian numbers, the numbers of permutations of the numbers 1 to n in which exactly k elements are greater than the previous element, and they can be expressed by
$$\begin{aligned} A(n,k)=\sum_{i=1}^{k}(-1)^{i} \binom{n+1}{i}(k-i)^{n}. \end{aligned}$$
(2.4)
Therefore, one may easily obtain
$$\begin{aligned} A_{0}(z)=1, \qquad A_{1}(z)=z, \qquad A_{2}(z)=z^{2}+z,\qquad A_{3}(z)=z^{3}+4z^{2}+z, \ldots \end{aligned}$$
For \(z\neq 1\), denote the Eulerian fraction
$$\begin{aligned} b_{n}(z)=\frac{A_{n}(z)}{(1-z)^{n+1}}. \end{aligned}$$
(2.5)
From (2.2) it is clear that
$$\begin{aligned} \sum_{k=0}^{\infty }b_{k}(z) \frac{t^{k}}{k!}=\frac{1}{1-ze^{t}}, \end{aligned}$$
(2.6)
which implies that \(b_{k}(z)\) can be computed by the following recurrence relation:
$$\begin{aligned} &b_{0}(z)=\frac{1}{1-z}, \end{aligned}$$
(2.7)
$$\begin{aligned} &b_{k}(z)=\frac{z}{1-z}\sum_{j=0}^{k-1} \binom{k}{j}b_{j}(z), \quad k \geq 1. \end{aligned}$$
(2.8)
Also, we can obtain an explicit expression [11] as follows:
$$\begin{aligned} b_{k}(z)=\sum_{j=0}^{k} j!S(k,j)\frac{z^{j}}{(1-z)^{j+1}}, \end{aligned}$$
(2.9)
where \(S(k,j)\) are the Stirling numbers of the second kind.
It is worth noting that a general summation formula for power series using the Eulerian fractions was established in the recent paper [26].
Lemma 2.1
(cf. Theorem 4.2 [26])
Let m be a positive integer, and both P and Q be nonnegative integers. Suppose that \(f(x)\) has the \((m+1)\)th continuous derivative on \([P,Q]\). For \(0< z<1\), \(f^{(m)}(x)\) and \(f^{(m+1)}(x)\) keep opposite signs in \((P,Q)\). Then there exists a number \(\theta \in (0,1)\) such that
$$\begin{aligned} \sum_{k=P}^{Q-1}f(k)z^{k}= \sum_{k=0}^{m-1}\frac{b_{k}(z)}{k!} \bigl[z ^{P}f^{(k)}(P)-z^{Q}f^{(k)}(Q) \bigr]+\theta \frac{b_{m}(z)}{m!} \bigl[z^{P}f^{(m)}(P)-z^{Q}f^{(m)}(Q) \bigr]. \end{aligned}$$
(2.10)
Remark 2.1
It is well known that the Euler–Maclaurin formula [1] is usually applied to treat the summation \(S=\sum_{k=a}^{b}f(k)\), and it was also used to approximate the generalized-Euler-constant function \(\gamma (z)\), see [12]. It seems that the above lemma is more suitable to treat a general summation formula for power series with the form \(S=\sum_{k=a}^{b}f(k)z^{k}\ (0< z<1)\). The lemma provides us a new approach to estimate \(\gamma (z)\), and it will play a key role in the next section.
Remark 2.2
In particular, if
$$\begin{aligned} \lim_{Q\rightarrow +\infty }z^{Q}f^{(k)}(Q)=0,\quad 0\leq k\leq m, \end{aligned}$$
(2.11)
as \(Q\rightarrow +\infty \), then (2.10) can be rewritten as
$$\begin{aligned} \sum_{k=P}^{\infty }f(k)z^{k}=z^{P} \Biggl\{ \sum_{k=0}^{m-1} \frac{b _{k}(z)}{k!}f^{(k)}(P)+\theta \frac{b_{m}(z)}{m!}f^{(m)}(P) \Biggr\} . \end{aligned}$$
(2.12)
Obviously, taking \(f(x)=x^{n}\), \(P=0\), and \(m=n+1\), (2.12) reduces to (2.1).

3 Estimate of the generalized-Euler-constant function

Let N be a positive integer. In this section, by using (2.12) we first give a general inequality for the error bound of \(\gamma (z)-\gamma _{N-1}(z)\) when \(0< z<1\).
Theorem 3.1
Let p and q be any positive integers. If \(N\geq -\frac{c_{2p+3}(z)}{c _{2p+2}(z)}\), then we have
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)> z^{N-1}\sum _{k=2}^{2p+1}\frac{c_{k}(z)}{N ^{k}}, \quad 0< z< 1. \end{aligned}$$
(3.1)
If \(N\geq -\frac{c_{2q+2}(z)}{c_{2q+1}(z)}\), then we have
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)< z^{N-1}\sum _{k=2}^{2q}\frac{c_{k}(z)}{N ^{k}},\quad 0< z< 1. \end{aligned}$$
(3.2)
In the above inequalities, the coefficients \(c_{k}(z)\) are explicitly expressed by
$$\begin{aligned} c_{k}(z)=\frac{(-1)^{k}}{k} \biggl[ \frac{1-z}{z}b_{k}(z)-kb_{k-1}(z) \biggr], \quad k\geq 2, \end{aligned}$$
(3.3)
where \(b_{k}(z)\) are the Eulerian fractions introduced in the second section.
Proof
Write
$$\begin{aligned} f(t)=\frac{1}{t}-\ln \frac{t+1}{t}. \end{aligned}$$
(3.4)
After simple calculations, we arrive at
$$\begin{aligned} f^{(i)}(t) &=(-1)^{i}(i-1)! \biggl[ \frac{i}{t^{i+1}}+ \frac{1}{(t+1)^{i}}-\frac{1}{t^{i}} \biggr] \end{aligned}$$
(3.5)
$$\begin{aligned} &=\frac{(-1)^{i}(i-1)!}{t^{i+1}(t+1)^{i}}\sum_{k=0}^{i} \binom{i}{k} \biggl(i-\frac{k}{i-k+1} \biggr)t^{k}, \quad i \geq 1, \end{aligned}$$
(3.6)
which implies that
$$\begin{aligned} (-1)^{i}f^{(i)}(t)>0,\quad t>0. \end{aligned}$$
(3.7)
By (3.4) and (3.6), for each \(i\geq 0\), we also have
$$\begin{aligned} \lim_{t\rightarrow +\infty } z^{t}f^{(i)}(t)=0,\quad 0< z< 1. \end{aligned}$$
(3.8)
Therefore, according to (2.12), for \(0< z<1\), there exists \(\theta \in (0,1)\) such that
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z) &=\frac{1}{z} \sum_{k=N}^{\infty } \biggl( \frac{1}{k}- \ln \frac{k+1}{k} \biggr)z^{k} \\ &=z^{N-1} \Biggl[\sum_{k=0}^{m-1} \frac{b_{k}(z)}{k!}f^{(k)}(N)+\theta \frac{b_{m}(z)}{m!}f^{(m)}(N) \Biggr], \end{aligned}$$
(3.9)
where m is a positive integer. It follows from (3.4) and (3.5) that
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)={}&z^{N-1} \Biggl\{ b_{0}(z) \biggl(\frac{1}{N}- \ln \frac{N+1}{N} \biggr) \\ &{}+\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{k} \biggl(\frac{k}{N^{k+1}}+ \frac{1}{(N+1)^{k}}-\frac{1}{N^{k}} \biggr) \\ &{}+\theta \frac{(-1)^{m}b_{m}(z)}{m} \biggl(\frac{m}{N^{m+1}}+ \frac{1}{(N+1)^{m}}-\frac{1}{N^{m}} \biggr) \Biggr\} . \end{aligned}$$
(3.10)
By the Taylor expansion we have
$$\begin{aligned} &\ln \frac{N+1}{N}=\sum_{j=1}^{m} \frac{(-1)^{j-1}}{jN^{j}}+\frac{(-1)^{m}}{(m+1)N ^{m+1}}\frac{1}{ (1+\frac{\phi _{0}}{N} )^{m+1}}, \end{aligned}$$
(3.11)
$$\begin{aligned} &\frac{1}{(N+1)^{k}}=\frac{1}{N^{k}} \Biggl\{ \sum _{j=0}^{m-k} \binom{k+j-1}{j} \frac{(-1)^{j}}{N^{j}}+\binom{m}{k-1}\frac{(-1)^{m+1-k}}{N ^{m+1-k} (1+\frac{\phi _{k}}{N} )^{m+1}} \Biggr\} , \end{aligned}$$
(3.12)
where \(0<\phi _{k}<1\) for \(k=0,1,\ldots,m-1\). When \(m\geq 3\), substituting (3.11) and (3.12) into (3.10) yields
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)={}&z^{N-1} \Biggl\{ \sum_{k=2}^{m} \frac{(-1)^{k}b _{0}(z)}{kN^{k}} +\frac{(-1)^{m+1}b_{0}(z)}{(m+1)N^{m+1}}\frac{1}{ (1+\frac{\phi _{0}}{N} )^{m+1}} \\ &{}+\sum_{k=2}^{m}\frac{(-1)^{k-1}b_{k-1}(z)}{N^{k}}+ \sum_{k=1}^{m-1} \sum _{j=0}^{m-k}\frac{(-1)^{k+j}b_{k}(z)}{kN^{k+j}} \binom{k+j-1}{j} \\ &{}+\frac{(-1)^{m+1}}{N^{m+1}}\sum_{k=1}^{m-1} \frac{b_{k}(z)}{k}\frac{ \binom{m}{k-1}}{ (1+\frac{\phi _{k}}{N} )^{m+1}}-\sum_{k=1} ^{m-1}\frac{(-1)^{k}b_{k}(z)}{k}\frac{1}{N^{k}} +\epsilon \Biggr\} , \end{aligned}$$
(3.13)
where
$$\begin{aligned} \epsilon =\theta \frac{(-1)^{m}b_{m}(z)}{m} \biggl( \frac{m}{N^{m+1}}+ \frac{1}{(N+1)^{m}}-\frac{1}{N^{m}} \biggr). \end{aligned}$$
(3.14)
Taking \(u=k+j\), we obtain
$$\begin{aligned} &\sum_{k=1}^{m-1}\sum _{j=0}^{m-k}\frac{(-1)^{k+j}b_{k}(z)}{kN^{k+j}} \binom{k+j-1}{j} \\ &\quad =\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{kN^{k}}+ \sum_{k=1}^{m-1} \sum _{j=1}^{m-k}\frac{(-1)^{k+j}b_{k}(z)}{kN^{k+j}} \binom{k+j-1}{j} \\ &\quad =\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{kN^{k}}+ \sum_{u=2}^{m}\frac{(-1)^{u}}{N ^{u}}\sum _{k=1}^{u-1}\frac{b_{k}(z)}{k} \binom{u-1}{k-1} \\ &\quad =\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{kN^{k}}+ \sum_{u=2}^{m-1}\frac{(-1)^{u}}{N ^{u}}\sum _{k=1}^{u-1}\frac{b_{k}(z)}{k} \binom{u-1}{k-1}+\frac{(-1)^{m}}{N ^{m}}\sum_{k=1}^{m-1} \binom{m-1}{k-1}\frac{b_{k}(z)}{k}. \end{aligned}$$
Since
$$\begin{aligned} \frac{1}{k}\binom{u-1}{k-1}=\frac{1}{u} \binom{u}{k}, \end{aligned}$$
we have
$$\begin{aligned} &\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{kN^{k}}+ \sum_{u=2}^{m-1}\frac{(-1)^{u}}{N ^{u}}\sum _{k=1}^{u-1}\frac{b_{k}(z)}{k} \binom{u-1}{k-1} \\ &\quad =\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{kN^{k}}+ \sum_{u=2}^{m-1}\frac{(-1)^{u}}{uN ^{u}}\sum _{k=1}^{u-1}\binom{u}{k}b_{k}(z) \\ &\quad =-\frac{b_{1}(z)}{N}+\sum_{k=2}^{m-1} \frac{(-1)^{k}}{kN^{k}} \Biggl(b _{k}(z)+\sum _{j=1}^{k-1}\binom{k}{j}b_{j}(z) \Biggr) \\ &\quad=\sum_{k=1}^{m-1}\frac{(-1)^{k}}{kN^{k}} \sum_{j=1}^{k}\binom{k}{j}b _{j}(z). \end{aligned}$$
Therefore,
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)={}&z^{N-1} \Biggl\{ \sum _{k=2}^{m}\frac{(-1)^{k}b _{0}(z)}{kN^{k}} + \frac{(-1)^{m+1}b_{0}(z)}{(m+1)N^{m+1}}\frac{1}{ (1+\frac{\phi _{0}}{N} )^{m+1}} \\ &{}+\sum_{k=2}^{m}\frac{(-1)^{k-1}b_{k-1}(z)}{N^{k}}+ \sum_{k=1}^{m-1}\frac{(-1)^{k}}{kN ^{k}}\sum _{j=1}^{k}\binom{k}{j}b_{j}(z) \\ &{}+\frac{(-1)^{m}}{N^{m}}\sum_{k=1}^{m-1} \binom{m-1}{k-1} \frac{b_{k}(z)}{k}+\frac{(-1)^{m+1}}{N^{m+1}}\sum _{k=1}^{m-1}\frac{b _{k}(z)}{k} \frac{\binom{m}{k-1}}{ (1+\frac{\phi _{k}}{N} ) ^{m+1}} \\ &{}-\sum_{k=1}^{m-1}\frac{(-1)^{k}b_{k}(z)}{k} \frac{1}{N^{k}} +\epsilon \Biggr\} . \end{aligned}$$
Because of (2.8) and (3.3) it follows that
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z) &=z^{N-1} \Biggl\{ \sum_{k=2}^{m-1} \frac{c _{k}(z)}{N^{k}} +T_{1}+T_{2}+\epsilon \Biggr\} , \end{aligned}$$
(3.15)
where
$$\begin{aligned} &T_{1}=\frac{(-1)^{m}b_{0}(z)}{mN^{m}}+\frac{(-1)^{m+1}b_{0}(z)}{(m+1)N ^{m+1}} \frac{1}{ (1+\frac{\phi _{0}}{N} )^{m+1}}, \end{aligned}$$
(3.16)
$$\begin{aligned} &T_{2}=\frac{(-1)^{m}}{mN^{m}}\sum_{k=1}^{m-2} \binom{m}{k}b_{k}(z)+\frac{(-1)^{m+1}}{(m+1)N ^{m+1}}\sum _{k=1}^{m-1}b_{k}(z) \frac{\binom{m+1}{k}}{ (1+\frac{ \phi _{k}}{N} )^{m+1}}. \end{aligned}$$
(3.17)
Observe that
$$\begin{aligned} T_{1}+T_{2}=\frac{(-1)^{m}}{N^{m}} \Biggl\{ \frac{1}{m}\sum_{k=0}^{m-2} \binom{m}{k}b_{k}(z)-\frac{1}{(m+1)N}\sum _{k=0}^{m-1}b_{k}(z) \frac{ \binom{m+1}{k}}{ (1+\frac{\phi _{k}}{N} )^{m+1}} \Biggr\} , \end{aligned}$$
(3.18)
which implies that
$$\begin{aligned} (-1)^{m}(T_{1}+T_{2})>0, \end{aligned}$$
(3.19)
if
$$\begin{aligned} N\geq \frac{\frac{1}{m+1}\sum_{k=0}^{m-1}\binom{m+1}{k}b_{k}(z)}{ \frac{1}{m}\sum_{k=0}^{m-2}\binom{m}{k}b_{k}(z)}. \end{aligned}$$
(3.20)
According to (2.8) and (3.3), (3.20) is equivalent to
$$\begin{aligned} N\geq -\frac{c_{m+1}(z)}{c_{m}(z)}. \end{aligned}$$
(3.21)
Thus, if \(m=2q+1\) and \(N\geq -\frac{c_{m+1}(z)}{c_{m}(z)}\), then
$$\begin{aligned} T_{1}+T_{2}< 0, \quad \epsilon < 0. \end{aligned}$$
As a consequence, by (3.15) we have
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)< z^{N-1}\sum _{k=2}^{2q}\frac{c_{k}(z)}{N ^{k}}. \end{aligned}$$
Similarly, if \(m=2p+2\) and \(N\geq -\frac{c_{m+1}(z)}{c_{m}(z)}\), then
$$\begin{aligned} T_{1}+T_{2}>0,\quad \epsilon > 0, \end{aligned}$$
which implies
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)> z^{N-1}\sum _{k=2}^{2p+1}\frac{c_{k}(z)}{N ^{k}}. \end{aligned}$$
This completes the proof. □
The coefficients \(c_{k}(z)\) in Theorem 3.1 are computed explicitly. In the following theorem, we provide an alternative approach to compute the coefficients recursively.
Theorem 3.2
The coefficients \(c_{k}(z)\) in Theorem 3.1 can be determined by the following recurrence relation:
$$\begin{aligned} &c_{2}(z)=\frac{1}{2(1-z)}, \end{aligned}$$
(3.22)
$$\begin{aligned} &c_{k}(z)=\frac{z}{1-z}\sum_{j=2}^{k-1}(-1)^{k-j} \binom{k-1}{j-1}c _{j}(z)+\frac{(-1)^{k}}{k(1-z)},\quad k\geq 3. \end{aligned}$$
(3.23)
Proof
From (3.3) and (2.9) it is easy to verify that
$$\begin{aligned} c_{2}(z)=\frac{1}{2} \biggl[\frac{1-z}{z}b_{2}(z)-2b_{1}(z) \biggr]= \frac{1}{2(1-z)}. \end{aligned}$$
For \(k\geq 3\), by (2.7), (2.8), and (3.3), we calculate the right-hand side of (3.23):
$$\begin{aligned} &\frac{z}{1-z}\sum_{j=1}^{k-1}(-1)^{k-j} \binom{k-1}{j-1}c_{j}(z)+ \frac{(-1)^{k}}{k(1-z)} \\ &\quad=(-1)^{k} \Biggl\{ \frac{z}{1-z}\sum _{j=1}^{k-1}\frac{1}{j} \binom{k-1}{j-1} \biggl[\frac{1-z}{z}b_{j}(z)-jb_{j-1}(z) \biggr]+ \frac{1}{k(1-z)} \Biggr\} \\ &\quad=(-1)^{k} \Biggl\{ \frac{1}{k}\sum _{j=0}^{k-1}\binom{k}{j}b_{j}(z)- \frac{1-z}{z}\sum_{j=1}^{k-1} \binom{k-1}{j-1}b_{j-1}(z) \Biggr\} \\ &\quad=\frac{(-1)^{k}}{k} \biggl\{ \frac{1-z}{z}b_{k}(z)-kb_{k-1}(z) \biggr\} \\ &\quad =c_{k}(z). \end{aligned}$$
Thus, the proof is complete. □
Remark 3.1
By the above recurrence relation, we obtain the first few cases of \(c_{k}(z)\):
$$\begin{aligned} &c_{2}(z)=\frac{1}{2(1-z)},\qquad c_{3}(z)=- \frac{2z+1}{3(1-z)^{2}}, \\ &c_{4}(z)=\frac{3z^{2}+8z+1}{4(1-z)^{3}}, \qquad c_{5}(z)=- \frac{4z ^{3}+33z^{2}+22z+1}{5(1-z)^{4}}, \\ &c_{6}(z)=\frac{5z^{4}+104z^{3}+198z^{2}+52z+1}{6(1-z)^{5}}, \\ &c_{7}(z)=- \frac{6z^{5}+285z^{4}+1208z^{3}+906z^{2}+114z+1}{7(1-z)^{6}}. \end{aligned}$$
Observing the above, we find the following properties for \(c_{k}(z)\).
Theorem 3.3
For \(0< z<1\), the coefficients \(c_{k}(z)\) in Theorem 3.1 satisfy
$$\begin{aligned} (-1)^{k}c_{k}(z)>0, \quad k\geq 2. \end{aligned}$$
(3.24)
In particular, if \(\frac{1}{7}< z<1\), then
$$\begin{aligned} \bigl\vert c_{k}(z) \bigr\vert < \bigl\vert c_{k+1}(z) \bigr\vert ,\quad k\geq 2. \end{aligned}$$
(3.25)
Proof
By (2.8), we have
$$\begin{aligned} c_{k}(z)=\frac{(-1)^{k}}{k}\sum _{j=0}^{k-2}\binom{k}{j}b_{j}(z), \end{aligned}$$
(3.26)
which implies that (3.24) is true because \(b_{j}(z)>0\) for all \(j\geq 0\) and \(0< z<1\). By (3.26), we further have
$$\begin{aligned} \bigl\vert c_{k+1}(z) \bigr\vert - \bigl\vert c_{k}(z) \bigr\vert =\sum_{j=0}^{k-2} \biggl[\frac{1}{k+1} \binom{k+1}{j}-\frac{1}{k} \binom{k}{j} \biggr]b_{j}(z)+\frac{k}{2}b _{k-1}(z). \end{aligned}$$
(3.27)
For \(1\leq j\leq k-2\),
$$\begin{aligned} \frac{1}{k+1}\binom{k+1}{j}-\frac{1}{k} \binom{k}{j}= \biggl[\frac{1}{k+1-j}- \frac{1}{k} \biggr] \binom{k}{j}\geq 0. \end{aligned}$$
(3.28)
Thus,
$$\begin{aligned} \bigl\vert c_{k+1}(z) \bigr\vert - \bigl\vert c_{k}(z) \bigr\vert \geq \biggl[\frac{1}{k+1}- \frac{1}{k} \biggr]b _{0}(z)+\frac{k}{2}b_{k-1}(z). \end{aligned}$$
(3.29)
From (2.8) it follows that
$$\begin{aligned} b_{k-1}(z)>\frac{z}{1-z}b_{0}(z). \end{aligned}$$
(3.30)
By (3.29) and (3.30), we obtain
$$\begin{aligned} \bigl\vert c_{k+1}(z) \bigr\vert - \bigl\vert c_{k}(z) \bigr\vert > \biggl[\frac{1}{k+1}- \frac{1}{k}+ \frac{kz}{2(1-z)} \biggr]b_{0}(z). \end{aligned}$$
(3.31)
It is easy to verify that when \(1/7< z<1\) there holds
$$\begin{aligned} \frac{1}{k+1}-\frac{1}{k}+ \frac{kz}{2(1-z)}>0, \end{aligned}$$
(3.32)
which implies that (3.25) is true. □
The following theorem gives the conditions for N in a simpler form than those in Theorem 3.1.
Theorem 3.4
Let p and q be any positive integers. If \(N\geq (2p+2) (\frac{(p+1)z}{1-z}+ \frac{1}{3} )\), then
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)> z^{N-1}\sum _{k=2}^{2p+1}\frac{c_{k}(z)}{N ^{k}},\quad 0< z< 1. \end{aligned}$$
(3.33)
If \(N\geq (2q+1) ((q+\frac{1}{2})\frac{z}{1-z}+\frac{1}{3} )\), then
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)< z^{N-1}\sum _{k=2}^{2q}\frac{c_{k}(z)}{N ^{k}}, \quad 0< z< 1. \end{aligned}$$
(3.34)
Proof
By (2.8) we have
$$\begin{aligned} &\sum_{k=0}^{m-2}\frac{b_{k}(z)}{m} \binom{m}{k}-\frac{1}{N}\sum_{k=0} ^{m-1}\frac{b_{k}(z)}{m+1}\binom{m+1}{k} \\ &\quad =\sum_{k=0}^{m-2}\frac{b_{k}(z)}{m} \binom{m}{k}-\frac{1}{N}\sum_{k=0} ^{m-2}\frac{b_{k}(z)}{m+1}\binom{m+1}{k}-\frac{m}{2N} \frac{z}{1-z} \sum_{k=0}^{m-2} \binom{m-1}{k}b_{k}(z) \\ &\quad =\frac{1}{N}\sum_{k=0}^{m-2}b_{k}(z) \binom{m}{k} \biggl[\frac{N}{m}- \frac{1}{m+1-k}- \frac{m-k}{2}\frac{z}{1-z} \biggr]. \end{aligned}$$
If \(N\geq m (\frac{1}{3}+\frac{m}{2}\frac{z}{1-z} )\), we have
$$\begin{aligned} \frac{N}{m}-\frac{1}{m+1-k}-\frac{m-k}{2} \frac{z}{1-z}\geq 0 \end{aligned}$$
for all \(k=0,1,\ldots,m-2\). This implies (3.19) is true. The proof left is similar to that of Theorem 3.1. □
Remark 3.2
In Theorems 3.1 and 3.4, the conditions for N are sufficient but not necessary. It is possible to relax the conditions for N. Even we conjecture that, for some fixed \(z\in (0,1)\), Theorem 3.1 is true for any positive integer N.
Remark 3.3
In a nutshell, according to Theorems 3.1 and 3.4, for sufficiently large N and any positive integers p and q, we have
$$\begin{aligned} & z^{N-1}\sum_{k=2}^{2p+1} \frac{(-1)^{k}}{kN^{k}} \biggl[\frac{1-z}{z}b _{k}(z)-kb_{k-1}(z) \biggr]< \gamma (z)-\gamma _{N-1}(z) \\ &\quad < z^{N-1}\sum_{k=2}^{2q} \frac{(-1)^{k}}{kN^{k}} \biggl[\frac{1-z}{z}b _{k}(z)-kb_{k-1}(z) \biggr]. \end{aligned}$$
(3.35)
In particular, when \(z=1/2\), there holds
$$\begin{aligned} & \biggl(\frac{1}{2} \biggr)^{N-1}\sum _{k=2}^{2p+1}\frac{(-1)^{k}}{kN ^{k}} \biggl[b_{k} \biggl(\frac{1}{2} \biggr)-kb_{k-1} \biggl(\frac{1}{2} \biggr) \biggr] \\ &\quad < \gamma \biggl(\frac{1}{2} \biggr)-\gamma _{N-1} \biggl(\frac{1}{2} \biggr) \\ &\quad < \biggl(\frac{1}{2} \biggr)^{N-1}\sum _{k=2}^{2q}\frac{(-1)^{k}}{kN ^{k}} \biggl[b_{k} \biggl(\frac{1}{2} \biggr)-kb_{k-1} \biggl(\frac{1}{2} \biggr) \biggr], \end{aligned}$$
(3.36)
which generalizes the result (1.11) due to Chen and Han [5] for large N. In view of (3.36), a variety of simple inequalities for \(\gamma (\frac{1}{2} )-\gamma _{N-1} (\frac{1}{2} )\) are derived for sufficiently large N by choosing different parameters p and q.
$$\begin{aligned} &\frac{1}{2^{N-1}} \biggl(\frac{1}{N^{2}}-\frac{8}{3N^{3}} \biggr)< \gamma \biggl(\frac{1}{2} \biggr)-\gamma _{N-1} \biggl(\frac{1}{2} \biggr)< \frac{1}{2^{N-1}}\frac{1}{N^{2}},\quad (p=q=1), \\ &\frac{1}{2^{N-1}} \biggl(\frac{1}{N^{2}}-\frac{8}{3N^{3}}+ \frac{23}{2N ^{4}}-\frac{332}{5N^{5}} \biggr)\\ &\quad < \gamma \biggl( \frac{1}{2} \biggr)- \gamma _{N-1} \biggl( \frac{1}{2} \biggr) \\ &\quad < \frac{1}{2^{N-1}} \biggl(\frac{1}{N^{2}}-\frac{8}{3N^{3}}+ \frac{23}{2N ^{4}} \biggr),\quad (p=q=2), \\ &\frac{1}{2^{N-1}} \biggl(\frac{1}{N^{2}}-\frac{8}{3N^{3}}+ \frac{23}{2N ^{4}}-\frac{332}{5N^{5}}+\frac{479}{N^{6}}- \frac{29\text{,}024}{7N^{7}} \biggr)\\ &\quad < \gamma \biggl(\frac{1}{2} \biggr)-\gamma _{N-1} \biggl(\frac{1}{2} \biggr) \\ &\quad < \frac{1}{2^{N-1}} \biggl(\frac{1}{N^{2}}-\frac{8}{3N^{3}}+ \frac{23}{2N ^{4}}-\frac{332}{5N^{5}}+\frac{479}{N^{6}} \biggr),\quad (p=q=3). \end{aligned}$$
Remark 3.4
The inequalities for \(\gamma (\frac{1}{t} )-\gamma _{N-1} (\frac{1}{t} )\) were investigated by Ma and Chen [14]. In particular, some inequalities for the cases \(t=3\) and \(t=4\) were presented, see [14, 15, 29]. As examples, here we apply Theorem 3.1 to obtain several simple and new inequalities related to \(\gamma (\frac{1}{3} )- \gamma _{N-1} (\frac{1}{3} )\) and \(\gamma (\frac{1}{4} )- \gamma _{N-1} (\frac{1}{4} )\) for sufficiently large N.
Case \(t=3\):
$$\begin{aligned} &\frac{1}{3^{N-1}} \biggl(\frac{3}{4N^{2}}-\frac{5}{4N^{3}} \biggr)< \gamma \biggl(\frac{1}{3} \biggr)-\gamma _{N-1} \biggl(\frac{1}{3} \biggr)< \frac{1}{3^{N-1}}\frac{3}{4N^{2}}, \\ &\frac{1}{3^{N-1}} \biggl(\frac{3}{4N^{2}}-\frac{5}{4N^{3}}+ \frac{27}{8N ^{4}}-\frac{123}{10N^{5}} \biggr)\\ &\quad < \gamma \biggl( \frac{1}{3} \biggr)- \gamma _{N-1} \biggl( \frac{1}{3} \biggr) \\ &\quad < \frac{1}{3^{N-1}} \biggl(\frac{3}{4N^{2}}-\frac{5}{4N^{3}}+ \frac{27}{8N ^{4}} \biggr), \\ &\frac{1}{3^{N-1}} \biggl(\frac{3}{4N^{2}}-\frac{5}{4N^{3}}+ \frac{27}{8N ^{4}}-\frac{123}{10N^{5}}+\frac{56}{N^{6}}- \frac{17\text{,}127}{56N^{7}} \biggr)\\ &\quad < \gamma \biggl(\frac{1}{3} \biggr)-\gamma _{N-1} \biggl(\frac{1}{3} \biggr) \\ &\quad < \frac{1}{3^{N-1}} \biggl(\frac{3}{4N^{2}}-\frac{5}{4N^{3}}+ \frac{27}{8N ^{4}}-\frac{123}{10N^{5}}+\frac{56}{N^{6}} \biggr). \end{aligned}$$
Case \(t=4\):
$$\begin{aligned} &\frac{1}{4^{N-1}} \biggl(\frac{2}{3N^{2}}-\frac{8}{9N^{3}} \biggr)< \gamma \biggl(\frac{1}{4} \biggr)-\gamma _{N-1} \biggl(\frac{1}{4} \biggr)< \frac{1}{4^{N-1}}\frac{2}{3N^{2}}, \\ &\frac{1}{4^{N-1}} \biggl(\frac{2}{3N^{2}}-\frac{8}{9N^{3}}+ \frac{17}{9N ^{4}}-\frac{736}{135N^{5}} \biggr)\\ &\quad< \gamma \biggl( \frac{1}{4} \biggr)- \gamma _{N-1} \biggl( \frac{1}{4} \biggr) \\ &\quad < \frac{1}{4^{N-1}} \biggl(\frac{2}{3N^{2}}-\frac{8}{9N^{3}}+ \frac{17}{9N ^{4}} \biggr), \\ &\frac{1}{4^{N-1}} \biggl(\frac{2}{3N^{2}}-\frac{8}{9N^{3}}+ \frac{17}{9N ^{4}}-\frac{736}{135N^{5}}+\frac{1594}{81N^{6}}- \frac{48\text{,}296}{567N^{7}} \biggr)\\ &\quad< \gamma \biggl(\frac{1}{4} \biggr)- \gamma _{N-1} \biggl(\frac{1}{4} \biggr) \\ &\quad < \frac{1}{4^{N-1}} \biggl(\frac{2}{3N^{2}}-\frac{8}{9N^{3}}+ \frac{17}{9N ^{4}}-\frac{736}{135N^{5}}+\frac{1594}{81N^{6}} \biggr). \end{aligned}$$
Theorem 3.5
Let \(m\geq 3\) be a positive integer. For \(0< z<1\), we have the following asymptotic expansion:
$$\begin{aligned} \gamma (z)-\gamma _{N-1}(z)=z^{N-1}\sum _{k=2}^{m-1}\frac{c_{k}(z)}{N ^{k}}+O \biggl(\frac{z^{N-1}}{N^{m}} \biggr),\quad N\rightarrow \infty , \end{aligned}$$
(3.37)
where \(c_{k}(z)\) are described as in (3.3).
Proof
By (3.15) we immediately obtain (3.37). □
Remark 3.5
When \(z=1/2\), we recover the result of Chen and Han [5] about asymptotic expansion of \(\gamma (\frac{1}{2} )- \gamma _{N-1} (\frac{1}{2} )\):
$$\begin{aligned} \gamma \biggl(\frac{1}{2} \biggr)-\gamma _{N-1} \biggl( \frac{1}{2} \biggr)= \frac{1}{2^{N-1}} \biggl(\frac{1}{N^{2}}- \frac{8}{3N^{3}}+\frac{23}{2N ^{4}}-\frac{332}{5N^{5}}+ \frac{479}{N^{6}}-\frac{29\text{,}024}{7N^{7}}+ \cdots \biggr), \end{aligned}$$
as \(N\rightarrow \infty \).

4 Estimate of the generalized Somos’ quadratic recurrence constant

Sondow and Hadjicostas [25] generalized Somos’ quadratic recurrence constant (1.3) as
$$\begin{aligned} \sigma _{t}=\sqrt[t]{1\sqrt[t]{2\sqrt[t]{3 \sqrt[t]{4\cdots }}}}= \prod_{k=1}^{\infty }k^{\frac{1}{t^{k}}}. \end{aligned}$$
(4.1)
Then they established the relation between the generalized Somos’ quadratic recurrence constant \(\sigma _{t}\) and the function \(\gamma (\frac{1}{t} )\):
$$\begin{aligned} \gamma \biggl(\frac{1}{t} \biggr)=t\ln \frac{t}{(t-1)\sigma _{t}^{t-1}},\quad t>1. \end{aligned}$$
(4.2)
Recently, Coffey [6] obtained the following integral and series representations for \(\ln \sigma _{t}\):
$$\begin{aligned} \ln \sigma _{t}= \int _{0}^{\infty } \biggl(\frac{e^{-x}}{t-1}+ \frac{1}{1-te ^{x}} \biggr)\frac{dx}{x} \end{aligned}$$
(4.3)
and
$$\begin{aligned} \ln \sigma _{t}=\frac{1}{t-1}\sum _{k=1}^{\infty }\frac{(-1)^{k-1}}{k}Li _{k} \biggl(\frac{1}{t} \biggr)=\frac{1}{t-1}\sum _{k=1}^{\infty } \frac{1}{k} \biggl[Li_{k} \biggl(\frac{1}{t} \biggr)-1 \biggr] \end{aligned}$$
(4.4)
in terms of the polylogarithm function. Using (4.2) and Theorem 3.1, it is natural that we give an estimate for the generalized Somos’ quadratic recurrence constant \(\sigma _{t}\):
$$\begin{aligned} L_{t}< \sigma _{t} < U_{t}, \end{aligned}$$
(4.5)
where the bounds
$$\begin{aligned} &L_{t}= \Biggl\{ \frac{t}{t-1}\exp \Biggl\{ - \frac{\gamma _{N-1} (\frac{1}{t} )}{t}-\frac{1}{t^{N}}\sum_{k=2}^{2q} \frac{c_{k} (\frac{1}{t} )}{N^{k}} \Biggr\} \Biggr\} ^{\frac{1}{t-1}}, \end{aligned}$$
(4.6)
$$\begin{aligned} &U_{t}= \Biggl\{ \frac{t}{t-1}\exp \Biggl\{ - \frac{\gamma _{N-1} (\frac{1}{t} )}{t}-\frac{1}{t^{N}}\sum_{k=2}^{2p+1} \frac{c_{k} (\frac{1}{t} )}{N^{k}} \Biggr\} \Biggr\} ^{\frac{1}{t-1}}. \end{aligned}$$
(4.7)
Equivalently, (4.5) leads to a general estimate for \(\ln \sigma _{t}\).
Theorem 4.1
Let p and q be any positive integers. For sufficiently large N, we have
$$\begin{aligned} &\frac{1}{t-1} \Biggl\{ - \frac{\gamma _{N-1} (\frac{1}{t} )}{t}-\ln \biggl(1- \frac{1}{t} \biggr)-\frac{1}{t^{N}}\sum _{k=2}^{2q}\frac{c_{k} (\frac{1}{t} )}{N ^{k}} \Biggr\} \\ &\quad< \ln \sigma _{t} < \frac{1}{t-1} \Biggl\{ - \frac{\gamma _{N-1} (\frac{1}{t} )}{t}-\ln \biggl(1- \frac{1}{t} \biggr)-\frac{1}{t^{N}}\sum _{k=2}^{2p+1}\frac{c_{k} (\frac{1}{t} )}{N ^{k}} \Biggr\} , \end{aligned}$$
(4.8)
where \(c_{k}(z)\) are described as in (3.3).
As a consequence, we easily obtain an asymptotic expansion for \(\ln \sigma _{t}\).
Theorem 4.2
As \(N\rightarrow \infty \), the following asymptotic expansion holds:
$$\begin{aligned} \ln \sigma _{t}=\frac{1}{t-1} \Biggl\{ - \frac{\gamma _{N-1} (\frac{1}{t} )}{t}-\ln \biggl(1- \frac{1}{t} \biggr)- \frac{1}{t^{N}}\sum_{k=2}^{m-1} \frac{c_{k} (\frac{1}{t} )}{N ^{k}} \Biggr\} +O \biggl(\frac{1}{N^{m}t^{N}} \biggr), \end{aligned}$$
(4.9)
where \(m\geq 3\).
Remark 4.1
Theorems 4.1 and 4.2 show that the function
$$\begin{aligned} \frac{1}{t-1} \Biggl\{ - \frac{\gamma _{N-1} (\frac{1}{t} )}{t}-\ln \biggl(1- \frac{1}{t} \biggr)-\frac{1}{t^{N}}\sum _{k=2}^{m-1}\frac{c_{k} (\frac{1}{t} )}{N ^{k}} \Biggr\} \end{aligned}$$
is a good approximation of \(\ln \sigma _{t}\) with the error term \(O (1/(N^{m}t^{N}) )\). In particular, for large t, the approximation effect is great.
When \(t=2\), we have the following estimate and asymptotic expansion for lnσ.
Corollary 4.1
Let p and q be any positive integers. For sufficiently large N, we have
$$\begin{aligned} -\frac{\gamma _{N-1} (\frac{1}{2} )}{2}+\ln 2- \frac{1}{2^{N}}\sum _{k=2}^{2q}\frac{c_{k} (\frac{1}{2} )}{N ^{k}}< \ln \sigma < - \frac{\gamma _{N-1} (\frac{1}{2} )}{2}+ \ln 2-\frac{1}{2^{N}}\sum _{k=2}^{2p+1}\frac{c_{k} (\frac{1}{2} )}{N ^{k}}. \end{aligned}$$
(4.10)
Corollary 4.2
As \(N\rightarrow \infty \), the following asymptotic expansion holds:
$$\begin{aligned} \ln \sigma =-\frac{\gamma _{N-1} (\frac{1}{2} )}{2}+\ln 2- \frac{1}{2^{N}} \sum_{k=2}^{m-1}\frac{c_{k} (\frac{1}{2} )}{N ^{k}}+O \biggl(\frac{1}{N^{m}2^{N}} \biggr), \end{aligned}$$
(4.11)
where \(m\geq 3\).
In fact, according to Definition (4.1) and Lemma 2.1 or (2.12), we find an alternative approach to get the estimate for \(\ln \sigma _{t}\).
Theorem 4.3
Let N be any positive integer. Then, for \(t>1\) and \(m\geq 1\), we have
$$\begin{aligned} \ln \sigma _{t}=\lambda _{N-1} \biggl( \frac{1}{t} \biggr)-\frac{\ln N}{t ^{N-1}(t-1)}-\frac{1}{t^{N}} \Biggl\{ \sum_{k=1}^{m-1}\frac{(-1)^{k}b _{k} (\frac{1}{t} )}{kN^{k}}+ \kappa \frac{(-1)^{m}b_{m} (\frac{1}{t} )}{mN^{m}} \Biggr\} , \end{aligned}$$
(4.12)
where \(0<\kappa <1\) and \(\lambda _{n}(z)=\sum_{k=1}^{n}(\ln k)z^{k}\).
Proof
Taking \(f(x)=\ln x\) and \(z=1/t\) in (2.12), we immediately obtain (4.12). □
It should be noted that the number N in Theorem 4.3 is not restricted except N is a positive integer. By Theorem 4.3, it is clear that the following corollary is true.
Corollary 4.3
For \(t>1\) and \(m\geq 1\), we have
$$\begin{aligned} \ln \sigma _{t}=\lambda _{N-1} \biggl( \frac{1}{t} \biggr)-\frac{\ln N}{t ^{N-1}(t-1)}-\frac{1}{t^{N}}\sum _{k=1}^{m-1}\frac{(-1)^{k}b_{k}( \frac{1}{t})}{kN^{k}}+O \biggl(\frac{1}{N^{m}t^{N}} \biggr), \end{aligned}$$
(4.13)
as \(N\rightarrow \infty \).
Also, we can obtain a new type of approximation for \(\ln \sigma _{t}\) similar to Theorem 3.1.
Corollary 4.4
For any positive integers p, q, and N, there holds
$$\begin{aligned} &\lambda _{N-1} \biggl(\frac{1}{t} \biggr)- \frac{\ln N}{t^{N-1}(t-1)}-\frac{1}{t ^{N}}\sum_{k=1}^{2p} \frac{(-1)^{k}b_{k}(\frac{1}{t})}{kN^{k}} \\ &\quad< \ln \sigma _{t} < \lambda _{N-1} \biggl(\frac{1}{t} \biggr)- \frac{\ln N}{t^{N-1}(t-1)}-\frac{1}{t ^{N}}\sum_{k=1}^{2q-1} \frac{(-1)^{k}b_{k}(\frac{1}{t})}{kN^{k}}. \end{aligned}$$
(4.14)
In particular, when \(t=2\) we have
$$\begin{aligned} & \lambda _{N-1} \biggl(\frac{1}{2} \biggr)- \frac{\ln N}{2^{N-1}}- \frac{1}{2^{N}}\sum_{k=1}^{2p} \frac{(-1)^{k}b_{k}(\frac{1}{2})}{kN ^{k}} \\ &\quad< \ln \sigma < \lambda _{N-1} \biggl(\frac{1}{2} \biggr)- \frac{\ln N}{2^{N-1}}- \frac{1}{2^{N}}\sum_{k=1}^{2q-1} \frac{(-1)^{k}b_{k}(\frac{1}{2})}{kN ^{k}}, \end{aligned}$$
(4.15)
and
$$\begin{aligned} \ln \sigma =\lambda _{N-1} \biggl( \frac{1}{2} \biggr)- \frac{\ln N}{2^{N-1}}-\frac{1}{2^{N}}\sum _{k=1}^{m-1}\frac{(-1)^{k}b _{k}(\frac{1}{2})}{kN^{k}}+O \biggl(\frac{1}{N^{m}2^{N}} \biggr), \end{aligned}$$
(4.16)
as \(N\rightarrow \infty \).
Finally, we get a new estimate for \(\gamma (z)\) when \(0< z<1\).
Corollary 4.5
For any positive integers p, q, and N, there holds
$$\begin{aligned} (1-z)z^{N-2}\sum_{k=1}^{2q-1} \frac{(-1)^{k}b_{k}(z)}{kN^{k}} &< \gamma (z)- \biggl(z^{N-2}\ln N- \frac{1-z}{z^{2}}\lambda _{N-1}(z)-\frac{ \ln (1-z)}{z} \biggr) \\ &< (1-z)z^{N-2}\sum_{k=1}^{2p} \frac{(-1)^{k}b_{k}(z)}{kN^{k}}. \end{aligned}$$
(4.17)
Proof
Using relation (4.2) and Corollary 4.3 and replacing t by \(1/z\), we have the desired result. □
In a similar manner, we obtain the following asymptotic expansion for \(\gamma (z)\).
Corollary 4.6
Let \(m\geq 1\) be a positive integer. For \(0< z<1\), we have
$$\begin{aligned} \gamma (z)={}&z^{N-2}\ln N-\frac{1-z}{z^{2}} \lambda _{N-1}(z)-\frac{ \ln (1-z)}{z} \\ & {}+(1-z)z^{N-2}\sum_{k=1}^{m-1} \frac{(-1)^{k}b_{k}(z)}{kN^{k}}+O \biggl(\frac{z ^{N-2}}{N^{m}} \biggr), \end{aligned}$$
(4.18)
as \(N\rightarrow \infty \).
Remark 4.2
Unlike Theorem 3.1, the number N in (4.17) is not restricted except N is a positive integer. In other words, identity (4.17) is true for all \(N\geq 1\).
Remark 4.3
If we approximate \(\gamma (z)\) by the function \(z^{N-2}\ln N-\frac{1-z}{z ^{2}}\lambda _{N-1}(z)-\frac{\ln (1-z)}{z}\) as \(N\rightarrow \infty \), then we arrive at the error bound \(O(z^{N-2}/N)\). By Theorem 3.5, we conclude that it is better that we approximate \(\gamma (z)\) by its partial sum \(\gamma _{N-1}(z)\) because the error bound is \(O(z^{N-1}/N ^{2})\).

Acknowledgements

The author sincerely appreciates the anonymous referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper.

Competing interests

The author declares that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Applied Mathematics Series, vol. 55. Nation Bureau of Standards, Dover, New York (1972) MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Applied Mathematics Series, vol. 55. Nation Bureau of Standards, Dover, New York (1972) MATH
3.
Zurück zum Zitat Chen, C.P.: New asymptotic expansions related to Somos’ quadratic recurrence constant. C. R. Acad. Sci. Paris, Ser. I 351, 9–12 (2013) MathSciNetCrossRef Chen, C.P.: New asymptotic expansions related to Somos’ quadratic recurrence constant. C. R. Acad. Sci. Paris, Ser. I 351, 9–12 (2013) MathSciNetCrossRef
4.
Zurück zum Zitat Chen, C.P.: Inequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constant. J. Number Theory 163, 596–607 (2016) MathSciNetCrossRef Chen, C.P.: Inequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constant. J. Number Theory 163, 596–607 (2016) MathSciNetCrossRef
5.
6.
Zurück zum Zitat Coffey, M.W.: Integral representations of functions and Addison-types for mathematical constants. J. Number Theory 157, 79–98 (2015) MathSciNetCrossRef Coffey, M.W.: Integral representations of functions and Addison-types for mathematical constants. J. Number Theory 157, 79–98 (2015) MathSciNetCrossRef
7.
Zurück zum Zitat Comtet, L.: Advanced Combinatorics, the Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974) MATH Comtet, L.: Advanced Combinatorics, the Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974) MATH
8.
Zurück zum Zitat Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003) MATH Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003) MATH
9.
Zurück zum Zitat Guillera, J., Sondow, J.: Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 40, 247–270 (2008) MathSciNetCrossRef Guillera, J., Sondow, J.: Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 40, 247–270 (2008) MathSciNetCrossRef
10.
Zurück zum Zitat Hirschhorn, M.D.: A note on Somos’ quadratic recurrence constant. J. Number Theory 131, 2061–2063 (2011) MathSciNetCrossRef Hirschhorn, M.D.: A note on Somos’ quadratic recurrence constant. J. Number Theory 131, 2061–2063 (2011) MathSciNetCrossRef
11.
Zurück zum Zitat Hsu, L.C., Shiue, J.S.: On certain summation problems and generalizations of Eulerian polynomials and numbers. Discrete Math. 204, 237–247 (1999) MathSciNetCrossRef Hsu, L.C., Shiue, J.S.: On certain summation problems and generalizations of Eulerian polynomials and numbers. Discrete Math. 204, 237–247 (1999) MathSciNetCrossRef
12.
Zurück zum Zitat Lampret, V.: Approximation of Sondow’s generalized-Euler-constant function on the interval \([-1,1]\). Ann. Univ. Ferrara 56, 65–76 (2010) MathSciNetCrossRef Lampret, V.: Approximation of Sondow’s generalized-Euler-constant function on the interval \([-1,1]\). Ann. Univ. Ferrara 56, 65–76 (2010) MathSciNetCrossRef
13.
Zurück zum Zitat Lu, D., Song, Z.: Some new continued fraction estimates of the Somos’ quadratic recurrence constant. J. Number Theory 155, 36–45 (2015) MathSciNetCrossRef Lu, D., Song, Z.: Some new continued fraction estimates of the Somos’ quadratic recurrence constant. J. Number Theory 155, 36–45 (2015) MathSciNetCrossRef
14.
Zurück zum Zitat Ma, X.S., Chen, C.P.: Inequalities and asymptotic expansions related to the generalized Somos quadratic recurrence constant. J. Inequal. Appl. 2018, 147 (2018) MathSciNetCrossRef Ma, X.S., Chen, C.P.: Inequalities and asymptotic expansions related to the generalized Somos quadratic recurrence constant. J. Inequal. Appl. 2018, 147 (2018) MathSciNetCrossRef
15.
Zurück zum Zitat Mortici, C.: Estimating the Somos’ quadratic recurrence constant. J. Number Theory 130, 2650–2657 (2010) MathSciNetCrossRef Mortici, C.: Estimating the Somos’ quadratic recurrence constant. J. Number Theory 130, 2650–2657 (2010) MathSciNetCrossRef
16.
Zurück zum Zitat Mortici, C.: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. Singapore 8, 99–107 (2010) MathSciNetCrossRef Mortici, C.: Optimizing the rate of convergence in some new classes of sequences convergent to Euler’s constant. Anal. Appl. Singapore 8, 99–107 (2010) MathSciNetCrossRef
17.
Zurück zum Zitat Nemes, G.: On the coefficients of an asymptotic expansion related to Somos’ quadratic recurrence constant. Appl. Anal. Discrete Math. 5, 60–66 (2011) MathSciNetCrossRef Nemes, G.: On the coefficients of an asymptotic expansion related to Somos’ quadratic recurrence constant. Appl. Anal. Discrete Math. 5, 60–66 (2011) MathSciNetCrossRef
18.
Zurück zum Zitat Pilehrood, K.H., Pilehrood, T.H.: Arithmetical properties of some series with logarithmic coefficients. Math. Z. 255, 117–131 (2007) MathSciNetCrossRef Pilehrood, K.H., Pilehrood, T.H.: Arithmetical properties of some series with logarithmic coefficients. Math. Z. 255, 117–131 (2007) MathSciNetCrossRef
19.
Zurück zum Zitat Pilehrood, K.H., Pilehrood, T.H.: Vacca-type series for values of the generalized Euler constant constant function and its derivative. J. Integer Seq. 13, Article ID 10.7.3 (2010) MathSciNetMATH Pilehrood, K.H., Pilehrood, T.H.: Vacca-type series for values of the generalized Euler constant constant function and its derivative. J. Integer Seq. 13, Article ID 10.7.3 (2010) MathSciNetMATH
20.
Zurück zum Zitat Ramanujan, S.: In: Hardy, G.H., Aiyar, P.V.S., Wilson, B.M. (eds.) Collected Papers of Srinivasa Ramanujan. AMS, Providence (2000) MATH Ramanujan, S.: In: Hardy, G.H., Aiyar, P.V.S., Wilson, B.M. (eds.) Collected Papers of Srinivasa Ramanujan. AMS, Providence (2000) MATH
22.
Zurück zum Zitat Somos, M.: Several constants related to quadratic recurrences. Unpublished note (1999) Somos, M.: Several constants related to quadratic recurrences. Unpublished note (1999)
23.
Zurück zum Zitat Sondow, J.: Double integrals for Euler’s constant and \(\ln (4/\pi )\) and an analog of Hadjicostas’s formula. Am. Math. Mon. 112, 61–65 (2005) MATH Sondow, J.: Double integrals for Euler’s constant and \(\ln (4/\pi )\) and an analog of Hadjicostas’s formula. Am. Math. Mon. 112, 61–65 (2005) MATH
24.
Zurück zum Zitat Sondow, J.: New Vacca-type rational series for Euler’s constant and its “alternating” analog in \(\ln (4/\pi )\). In: Additive Number Theory, pp. 331–340. Springer, New York (2010) CrossRef Sondow, J.: New Vacca-type rational series for Euler’s constant and its “alternating” analog in \(\ln (4/\pi )\). In: Additive Number Theory, pp. 331–340. Springer, New York (2010) CrossRef
25.
Zurück zum Zitat Sondow, J., Hadjicostas, P.: The generalized-Euler-constant function \(\gamma (z)\) and a generalization of Somos’s quadratic recurrence constant. J. Math. Anal. Appl. 332, 292–314 (2007) MathSciNetCrossRef Sondow, J., Hadjicostas, P.: The generalized-Euler-constant function \(\gamma (z)\) and a generalization of Somos’s quadratic recurrence constant. J. Math. Anal. Appl. 332, 292–314 (2007) MathSciNetCrossRef
26.
Zurück zum Zitat Wang, X., Hsu, L.C.: A summation formula for power series using Eulerian fractions. Fibonacci Q. 41, 23–30 (2003) MathSciNetMATH Wang, X., Hsu, L.C.: A summation formula for power series using Eulerian fractions. Fibonacci Q. 41, 23–30 (2003) MathSciNetMATH
28.
Zurück zum Zitat Xu, A., Cen, Z.: Asymptotic expansions for the psi function and the Euler–Mascheroni constant. J. Number Theory 180, 360–372 (2017) MathSciNetCrossRef Xu, A., Cen, Z.: Asymptotic expansions for the psi function and the Euler–Mascheroni constant. J. Number Theory 180, 360–372 (2017) MathSciNetCrossRef
29.
Zurück zum Zitat Yan, H., Zhang, Q., Xu, A.: A note on inequalities related to the generalized Somos quadratic recurrence constant. Submitted Yan, H., Zhang, Q., Xu, A.: A note on inequalities related to the generalized Somos quadratic recurrence constant. Submitted
30.
Zurück zum Zitat You, X., Chen, D.R.: Improved continued fraction sequence convergent to the Somos’ quadratic recurrence constant. J. Math. Anal. Appl. 436, 513–520 (2016) MathSciNetCrossRef You, X., Chen, D.R.: Improved continued fraction sequence convergent to the Somos’ quadratic recurrence constant. J. Math. Anal. Appl. 436, 513–520 (2016) MathSciNetCrossRef
Metadaten
Titel
Approximations of the generalized-Euler-constant function and the generalized Somos’ quadratic recurrence constant
verfasst von
Aimin Xu
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2153-0

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe