Skip to main content
Erschienen in: Polymer Science, Series D 3/2020

01.07.2020

Aromatic Polysulfones: Strategies of Synthesis, Properties, and Application

verfasst von: T. R. Deberdeev, A. I. Akhmetshina, L. K. Karimova, E. K. Ignat’eva, N. R. Galikhmanov, S. V. Grishin, A. A. Berlin, R. Ya. Deberdeev

Erschienen in: Polymer Science, Series D | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The review summarizes the results of recent studies in the field of synthesis of polymers containing a sulfonic group. Various methods for obtaining polysulfones and their prospects from the point of view of practical implementation are considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. K. Fink, High Performance Polymers (William Andrew Publishing, 2008). J. K. Fink, High Performance Polymers (William Andrew Publishing, 2008).
2.
Zurück zum Zitat R. Guo and J. E. McGrath, “Aromatic polyethers, polyetherketones, polysulfides, and polysulfones,” in Polymer Science: A Comprehensive Reference (Elsevier, 2012), pp. 377–430. R. Guo and J. E. McGrath, “Aromatic polyethers, polyetherketones, polysulfides, and polysulfones,” in Polymer Science: A Comprehensive Reference (Elsevier, 2012), pp. 377–430.
3.
Zurück zum Zitat Z. Xu, J. Liao, H. Tang, and N. Li, “Antifouling polysulfone ultrafiltration membranes with pendent sulfonamide groups,” J. Membr. Sci. 548, 481–489 (2018).CrossRef Z. Xu, J. Liao, H. Tang, and N. Li, “Antifouling polysulfone ultrafiltration membranes with pendent sulfonamide groups,” J. Membr. Sci. 548, 481–489 (2018).CrossRef
4.
Zurück zum Zitat Q. Zhang, S. Zhang, et al., “Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material,” J. Membr. Sci. 349 (1), 217–224 (2010).CrossRef Q. Zhang, S. Zhang, et al., “Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material,” J. Membr. Sci. 349 (1), 217–224 (2010).CrossRef
5.
Zurück zum Zitat A. M. Hidalgo, M. Gómez, M. D. Murcia, et al., “Behaviour of polysulfone ultrafiltration membrane for dyes removal,” J. Environ. Chem. Eng. 5 (4), 3991–3998 (2017).CrossRef A. M. Hidalgo, M. Gómez, M. D. Murcia, et al., “Behaviour of polysulfone ultrafiltration membrane for dyes removal,” J. Environ. Chem. Eng. 5 (4), 3991–3998 (2017).CrossRef
6.
Zurück zum Zitat K. Zahri, K. C. Wong, et al., “Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation,” RSC Adv. 6 (92), 89130–89139 (2016).CrossRef K. Zahri, K. C. Wong, et al., “Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation,” RSC Adv. 6 (92), 89130–89139 (2016).CrossRef
7.
Zurück zum Zitat A. I. Akhmetshina, A. Mochalova, M. M. Trubyanov, A. A. Atlaskin, N. R. Yanbikov, A. Mechergui, K. V. Otvagina, E. N. Razov, and I. V. Vorotyntsev, “Acidic gases separation from gas mixtures on the SILMs providing the facilitated and solution-diffusion transport mechanisms,” Membranes 9 (1), 9–22 (2019).CrossRef A. I. Akhmetshina, A. Mochalova, M. M. Trubyanov, A. A. Atlaskin, N. R. Yanbikov, A. Mechergui, K. V. Otvagina, E. N. Razov, and I. V. Vorotyntsev, “Acidic gases separation from gas mixtures on the SILMs providing the facilitated and solution-diffusion transport mechanisms,” Membranes 9 (1), 9–22 (2019).CrossRef
8.
Zurück zum Zitat H. M. Park, K. Y. Jee, and Y. T. Lee, “Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks,” J. Membr. Sci. 541, 510–518 (2017).CrossRef H. M. Park, K. Y. Jee, and Y. T. Lee, “Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks,” J. Membr. Sci. 541, 510–518 (2017).CrossRef
9.
Zurück zum Zitat M. Herrero, A. M. Martos, A. Varez, et al., “Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuel cell application,” Int. J. Hydrogen Energy 39 (8), 4016–4022 (2014).CrossRef M. Herrero, A. M. Martos, A. Varez, et al., “Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuel cell application,” Int. J. Hydrogen Energy 39 (8), 4016–4022 (2014).CrossRef
10.
Zurück zum Zitat M. Zhou, X. Chen, J. Pan, et al., “A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis,” Desalination 415, 29–39 (2017).CrossRef M. Zhou, X. Chen, J. Pan, et al., “A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis,” Desalination 415, 29–39 (2017).CrossRef
11.
Zurück zum Zitat Z. Yuan, X. Li, Y. Zhao, and H. Zhang, “Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery,” ACS Appl. Mater. Interfaces 7 (34), 19446–19454 (2015).CrossRef Z. Yuan, X. Li, Y. Zhao, and H. Zhang, “Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery,” ACS Appl. Mater. Interfaces 7 (34), 19446–19454 (2015).CrossRef
12.
Zurück zum Zitat X. Feng, Y. Shi, and Z. Huijuan, “Electrocatalytic enhancement of methanol oxidation by adding CeO2 nanoparticle on porous electrode,” J. Rare Earths 30 (1), 29–33 (2012).CrossRef X. Feng, Y. Shi, and Z. Huijuan, “Electrocatalytic enhancement of methanol oxidation by adding CeO2 nanoparticle on porous electrode,” J. Rare Earths 30 (1), 29–33 (2012).CrossRef
13.
Zurück zum Zitat Z. S. Khasbulatova, “Aromatic polysulfones,” Plast. Massy, No. 4, 20–23 (2009). Z. S. Khasbulatova, “Aromatic polysulfones,” Plast. Massy, No. 4, 20–23 (2009).
14.
Zurück zum Zitat K. T. Shakhmurzova, Zh. I. Kurdanova, A. A. Zhansitov, A. E. Baikaziev, S. Yu. Khashirova, S. I. Pakhomov, and M. Kh. Ligidov, “Synthesis and properties of aromatic carboxylic polyesters,” Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 60 (6), 28–40 (2017). K. T. Shakhmurzova, Zh. I. Kurdanova, A. A. Zhansitov, A. E. Baikaziev, S. Yu. Khashirova, S. I. Pakhomov, and M. Kh. Ligidov, “Synthesis and properties of aromatic carboxylic polyesters,” Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol. 60 (6), 28–40 (2017).
15.
Zurück zum Zitat C. Dizman, M. A. Tasdelen, and Y. Yagci, “Recent advances in the preparation of functionalized polysulfones,” Pol. Int. 62 (7), 991–1007 (2013). C. Dizman, M. A. Tasdelen, and Y. Yagci, “Recent advances in the preparation of functionalized polysulfones,” Pol. Int. 62 (7), 991–1007 (2013).
16.
Zurück zum Zitat G. R. B. Seymour and S. Kirshenbaum, The Development of Polysulfone and Other Polyarylethers. High Performance Polymers: Their Origin and Development (Springer, 1986).CrossRef G. R. B. Seymour and S. Kirshenbaum, The Development of Polysulfone and Other Polyarylethers. High Performance Polymers: Their Origin and Development (Springer, 1986).CrossRef
17.
Zurück zum Zitat R. A. Clendinning, CA Patent No. 847963 (1970). R. A. Clendinning, CA Patent No. 847963 (1970).
18.
Zurück zum Zitat D.-D. Guo, Z.-Z. Huang, X.-Y. Sang, and S.-R. Sheng, “Novel cardo poly(arylene ether nitrile sulfone) copolymers bearing xanthene moiety in the main chain,” High Perform. Polym. 28 (7), 793–799. D.-D. Guo, Z.-Z. Huang, X.-Y. Sang, and S.-R. Sheng, “Novel cardo poly(arylene ether nitrile sulfone) copolymers bearing xanthene moiety in the main chain,” High Perform. Polym. 28 (7), 793–799.
19.
Zurück zum Zitat Y. Chen, R. Guo, C. H. Lee, et al., “Partly fluorinated poly(arylene ether ketone sulfone) hydrophilicehydrophobic multiblock copolymers for fuel cell membranes,” Int. J. Hydrogen Energy 37 (7), 6132–6139 (2012).CrossRef Y. Chen, R. Guo, C. H. Lee, et al., “Partly fluorinated poly(arylene ether ketone sulfone) hydrophilicehydrophobic multiblock copolymers for fuel cell membranes,” Int. J. Hydrogen Energy 37 (7), 6132–6139 (2012).CrossRef
20.
Zurück zum Zitat H.-S. Lee, A. Roy, O. Lane, et al., “Synthesis and characterization of multiblock copolymers based on hydrophilic disulfonated poly(arylene ether sulfone) and hydrophobic partially fluorinated poly(arylene ether ketone) for fuel cell applications,” J. Polym. Sci. Part A: Polym. Chem. 48 (1), 214–222 (2010).CrossRef H.-S. Lee, A. Roy, O. Lane, et al., “Synthesis and characterization of multiblock copolymers based on hydrophilic disulfonated poly(arylene ether sulfone) and hydrophobic partially fluorinated poly(arylene ether ketone) for fuel cell applications,” J. Polym. Sci. Part A: Polym. Chem. 48 (1), 214–222 (2010).CrossRef
21.
Zurück zum Zitat R. Guo, O. Lane, D. VanHouten, and J. E. McGrath, “Synthesis and characterization of phenolphthalein-based poly(arylene ether sulfone) hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes,” Ind. Eng. Chem. Res. 49, 12125–12134 (2010).CrossRef R. Guo, O. Lane, D. VanHouten, and J. E. McGrath, “Synthesis and characterization of phenolphthalein-based poly(arylene ether sulfone) hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes,” Ind. Eng. Chem. Res. 49, 12125–12134 (2010).CrossRef
22.
Zurück zum Zitat J. Han, K. Kim, J. Kim, et al., “Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application,” J. Membr. Sci. 579, 70–78 (2019).CrossRef J. Han, K. Kim, J. Kim, et al., “Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application,” J. Membr. Sci. 579, 70–78 (2019).CrossRef
23.
Zurück zum Zitat N. Ureña, M. T. Pérez-Prior, C. Río, et al., “Multiblock copolymers of sulfonated PSU/PPSU poly(ether sulfone)s as solid electrolytes for proton exchange membrane fuel cells,” Electrochim. Acta 302, 428–440 (2019).CrossRef N. Ureña, M. T. Pérez-Prior, C. Río, et al., “Multiblock copolymers of sulfonated PSU/PPSU poly(ether sulfone)s as solid electrolytes for proton exchange membrane fuel cells,” Electrochim. Acta 302, 428–440 (2019).CrossRef
24.
Zurück zum Zitat Z. Chang, G. B. Fahs, B. Zhang, et al., “New semicrystalline block copolymers of poly(arylene ether sulfone)s and poly(1,4-cyclohexylenedimethylene terephthalate),” Polymer 74, 86–93 (2015).CrossRef Z. Chang, G. B. Fahs, B. Zhang, et al., “New semicrystalline block copolymers of poly(arylene ether sulfone)s and poly(1,4-cyclohexylenedimethylene terephthalate),” Polymer 74, 86–93 (2015).CrossRef
25.
Zurück zum Zitat S. C. Sutradhar, F. Ahmed, T. Ryu, et al., “A novel synthesis approach to partially fluorinated sulfonimide based poly (arylene ether sulfone)s for proton exchange membrane,” Polymer 74, 86–93 (2015).CrossRef S. C. Sutradhar, F. Ahmed, T. Ryu, et al., “A novel synthesis approach to partially fluorinated sulfonimide based poly (arylene ether sulfone)s for proton exchange membrane,” Polymer 74, 86–93 (2015).CrossRef
26.
Zurück zum Zitat Y. Imai, M. Ueda, and M. Ii, “Synthesis of aromatic polyether by fluoride-anion-assisted polycondensation with potassium fluoride,” Makromol. Chem. 179 (12), 2989–2991 (1978).CrossRef Y. Imai, M. Ueda, and M. Ii, “Synthesis of aromatic polyether by fluoride-anion-assisted polycondensation with potassium fluoride,” Makromol. Chem. 179 (12), 2989–2991 (1978).CrossRef
27.
Zurück zum Zitat K. Matsumoto, H. Komuro, T. Kai, and M. Jikei, “Synthesis of poly(ether sulfone)s by self-polycondensation of AB-type monomers,” Polym. J. 45 (9), 909–914 (2013).CrossRef K. Matsumoto, H. Komuro, T. Kai, and M. Jikei, “Synthesis of poly(ether sulfone)s by self-polycondensation of AB-type monomers,” Polym. J. 45 (9), 909–914 (2013).CrossRef
28.
Zurück zum Zitat W. Wei, L. Yang, and G. Chang, “Heat-resistant and photoluminescent indole-based poly(ether sulfone),” High Perform. Polym. 30 (4), 475–479 (2018).CrossRef W. Wei, L. Yang, and G. Chang, “Heat-resistant and photoluminescent indole-based poly(ether sulfone),” High Perform. Polym. 30 (4), 475–479 (2018).CrossRef
29.
Zurück zum Zitat Md. M. Islam, H.-H. Jang, Y.-D. Lim, et al., “Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application,” Fuel Cells 12 (6), 978–986 (2012). Md. M. Islam, H.-H. Jang, Y.-D. Lim, et al., “Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application,” Fuel Cells 12 (6), 978–986 (2012).
30.
Zurück zum Zitat Z. Hu, W. Tang, X. Zhang, et al., “Multiblock sulfonated poly(arylene ether sulfone)s with fluorenyl hydrophilic moieties for PEMFC applications,” J. Polym. Res. 23 (11) (2016). Z. Hu, W. Tang, X. Zhang, et al., “Multiblock sulfonated poly(arylene ether sulfone)s with fluorenyl hydrophilic moieties for PEMFC applications,” J. Polym. Res. 23 (11) (2016).
31.
Zurück zum Zitat Y. Z. Zhuo, A. N. Lai, Q. G. Zhang, et al., “Highly ionic-conductive crosslinked cardo poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells,” J. Membr. Sci. 491, 138–148 (2015).CrossRef Y. Z. Zhuo, A. N. Lai, Q. G. Zhang, et al., “Highly ionic-conductive crosslinked cardo poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells,” J. Membr. Sci. 491, 138–148 (2015).CrossRef
32.
Zurück zum Zitat H. R. Kricheldorf and G. Bier, “New polymer synthesis. IX. Synthesis of poly(ether sulfone)s from silylated diphenols or hydroxybenzoic acids,” J. Polym. Sci.: Polym. Chem. Ed. 21 (8), 2283–2289 (1983). H. R. Kricheldorf and G. Bier, “New polymer synthesis. IX. Synthesis of poly(ether sulfone)s from silylated diphenols or hydroxybenzoic acids,” J. Polym. Sci.: Polym. Chem. Ed. 21 (8), 2283–2289 (1983).
33.
Zurück zum Zitat G. J. Summers, M. G. Kasiama, and C. A. Summers, “Poly(ether ether sulfone)s and sulfonated poly(ether ether sulfone)s derived from functionalized 1,1-diphenylethylene derivatives,” Polym. Int. 65 (7), 798–810 (2016).CrossRef G. J. Summers, M. G. Kasiama, and C. A. Summers, “Poly(ether ether sulfone)s and sulfonated poly(ether ether sulfone)s derived from functionalized 1,1-diphenylethylene derivatives,” Polym. Int. 65 (7), 798–810 (2016).CrossRef
34.
Zurück zum Zitat J. M. García, G. O. Jones, J. DeWinter, et al., “Meisenheimer complex inspired catalyst- and solvent-free synthesis of noncyclic poly(aryl ether sulfone)s,” Macromolecules 47 (23), 8131–8136 (2014).CrossRef J. M. García, G. O. Jones, J. DeWinter, et al., “Meisenheimer complex inspired catalyst- and solvent-free synthesis of noncyclic poly(aryl ether sulfone)s,” Macromolecules 47 (23), 8131–8136 (2014).CrossRef
35.
Zurück zum Zitat T. D. Shaffer and V. Percec, “Functional polymers and sequential copolymers by phase transfer catalysis, 21. Thermotropic aromatic poly(ether sulfone)s: A new class of thermotropic aromatic main-chain liquid crystalline polymers,” Makromol. Chem. 187 (6), 1431–1439 (1986).CrossRef T. D. Shaffer and V. Percec, “Functional polymers and sequential copolymers by phase transfer catalysis, 21. Thermotropic aromatic poly(ether sulfone)s: A new class of thermotropic aromatic main-chain liquid crystalline polymers,” Makromol. Chem. 187 (6), 1431–1439 (1986).CrossRef
36.
Zurück zum Zitat T. D. Shaffer and V. Percec, “Functional polymers and sequential copolymers by phase transfer catalysis, 20. synthesis of copolymers and alternating block copolymers containing thermotropic liquid crystalline polyethers and aromatic poly(ether sulfone) segments,” Makromol. Chem. 187 (1), 111–123 (1986).CrossRef T. D. Shaffer and V. Percec, “Functional polymers and sequential copolymers by phase transfer catalysis, 20. synthesis of copolymers and alternating block copolymers containing thermotropic liquid crystalline polyethers and aromatic poly(ether sulfone) segments,” Makromol. Chem. 187 (1), 111–123 (1986).CrossRef
37.
Zurück zum Zitat V. Percec, B. C. Auman, H. Nava, and J. P. Kennedy, “Functional polymers and sequential copolymers by phase transfer catalysis. XXVIII. Synthesis and characterization of alternating block copolymers and polyformals of polyisobutylene and aromatic polyether sulfone,” J. Polym. Sci., Part A: Polym. Chem. 26, 721–741 (1988).CrossRef V. Percec, B. C. Auman, H. Nava, and J. P. Kennedy, “Functional polymers and sequential copolymers by phase transfer catalysis. XXVIII. Synthesis and characterization of alternating block copolymers and polyformals of polyisobutylene and aromatic polyether sulfone,” J. Polym. Sci., Part A: Polym. Chem. 26, 721–741 (1988).CrossRef
38.
Zurück zum Zitat Z. S. Khasbulatova and G. B. Shustov, “Polysulfone-terephthaloyl-di (n-hydroxybenzoates),” Plast. Massy, No. 6, 24–26 (2010). Z. S. Khasbulatova and G. B. Shustov, “Polysulfone-terephthaloyl-di (n-hydroxybenzoates),” Plast. Massy, No. 6, 24–26 (2010).
39.
Zurück zum Zitat X. Xie, B. Huang, W. Zhou, and M. Cai, “Synthesis and properties of novel copolymers of poly(ether ketone ether ketone ketone) and poly(ether ketone ketone ether ketone ketone) containing 1,4-naphthylene moieties,” Polym. Eng. Sci. 56 (5), 566–572 (2016).CrossRef X. Xie, B. Huang, W. Zhou, and M. Cai, “Synthesis and properties of novel copolymers of poly(ether ketone ether ketone ketone) and poly(ether ketone ketone ether ketone ketone) containing 1,4-naphthylene moieties,” Polym. Eng. Sci. 56 (5), 566–572 (2016).CrossRef
40.
Zurück zum Zitat H. Wen, P. Wang, S. Cheng, et al., “Synthesis and characterization of novel organosoluble poly(aryl ether ketone)s and poly(aryl ether ketone sulfone)s containing 1,4-naphthylene units,” High Perform. Polym. 27 (6), 705–713 (2015).CrossRef H. Wen, P. Wang, S. Cheng, et al., “Synthesis and characterization of novel organosoluble poly(aryl ether ketone)s and poly(aryl ether ketone sulfone)s containing 1,4-naphthylene units,” High Perform. Polym. 27 (6), 705–713 (2015).CrossRef
41.
Zurück zum Zitat M. Cai, M. Zhu, F. Xiao, et al., “Synthesis of copolymers of poly(ether sulfone ether ketone ketone) and poly(ether ketone diphenyl ketone ether ketone ketone) by electrophilic Friedel–Crafts solution polycondensation,” Polym. Adv. Technol. 22 (2), 254–261 (2011).CrossRef M. Cai, M. Zhu, F. Xiao, et al., “Synthesis of copolymers of poly(ether sulfone ether ketone ketone) and poly(ether ketone diphenyl ketone ether ketone ketone) by electrophilic Friedel–Crafts solution polycondensation,” Polym. Adv. Technol. 22 (2), 254–261 (2011).CrossRef
42.
Zurück zum Zitat H. R. J. Kricheldorf, “Cyclic polymers: Synthetic strategies and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 48 (2), 251–284 (2010).CrossRef H. R. J. Kricheldorf, “Cyclic polymers: Synthetic strategies and physical properties,” J. Polym. Sci. Part A: Polym. Chem. 48 (2), 251–284 (2010).CrossRef
43.
Zurück zum Zitat J. A. Cella, J. Fukuyama, and T. L. Guggenheim, “The preparation of novel oligomers,” Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 30 (2), 142 (1989). J. A. Cella, J. Fukuyama, and T. L. Guggenheim, “The preparation of novel oligomers,” Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 30 (2), 142 (1989).
44.
Zurück zum Zitat H. R. Kricheldorf, L. Vakhtangishvili, G. Schwarz, et al., “Macrocycles 25. Cyclic poly(ether sulfone)s derived from 4-tert-butylcatechol,” Polymer 44 (16), 4471–4480 (2003).CrossRef H. R. Kricheldorf, L. Vakhtangishvili, G. Schwarz, et al., “Macrocycles 25. Cyclic poly(ether sulfone)s derived from 4-tert-butylcatechol,” Polymer 44 (16), 4471–4480 (2003).CrossRef
45.
Zurück zum Zitat Z. Y. Wang, H. N. Carvalho, and A. S. Hay, “New synthesis of poly(arylene ether)s using masked bisphenols,” J. Chem. Society, Chem. Commun., No. 17, 1221 (1991). Z. Y. Wang, H. N. Carvalho, and A. S. Hay, “New synthesis of poly(arylene ether)s using masked bisphenols,” J. Chem. Society, Chem. Commun., No. 17, 1221 (1991).
46.
Zurück zum Zitat I. Colon and G. T. Kwiatkowski, “High molecular weight aromatic polymers by nickel coupling of aryl polychlorides,” J. Polym. Sci. Part A, Polym. Chem. 28 (2), 367–383 (1990).CrossRef I. Colon and G. T. Kwiatkowski, “High molecular weight aromatic polymers by nickel coupling of aryl polychlorides,” J. Polym. Sci. Part A, Polym. Chem. 28 (2), 367–383 (1990).CrossRef
Metadaten
Titel
Aromatic Polysulfones: Strategies of Synthesis, Properties, and Application
verfasst von
T. R. Deberdeev
A. I. Akhmetshina
L. K. Karimova
E. K. Ignat’eva
N. R. Galikhmanov
S. V. Grishin
A. A. Berlin
R. Ya. Deberdeev
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Polymer Science, Series D / Ausgabe 3/2020
Print ISSN: 1995-4212
Elektronische ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421220030065

Weitere Artikel der Ausgabe 3/2020

Polymer Science, Series D 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.