Skip to main content

2016 | OriginalPaper | Buchkapitel

Artificial Hand with Stiffness Adjuster

verfasst von : K. Koganezawa, A. Ito

Erschienen in: Intelligent Autonomous Systems 13

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper deals with a five-finger hand, which is based on the original finger mechanism consisting of a planetary gear system and the compound four bar linkages. It takes an all-in-one design: all of the actuators (total five DC motors) are embedded into a palm, while finger parts have no electronic devices for attaining to be inherently safe as an end-effector. The mechanism allows us adaptive synergic motions of three joints of a finger (MP, PIP, and DIP) according to the shape of the objects to be gripped. The hand has a novel mechanism for adjusting stiffness of fingers, which provides an ability to give passive gripping force to a gripping object according to its elasticity. Driving tests show that it achieves fundamental motions of a human hand in daily life without any sensory feedback and also shows that the stiffness adjuster works effectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kawasaki, H., et al. Mechanism of Anthropomorphic Robot Hand: Gifu Hand I, J. Robot. And Mech., Vol. 11, No. 4, pp. 269–273, 1999. Kawasaki, H., et al. Mechanism of Anthropomorphic Robot Hand: Gifu Hand I, J. Robot. And Mech., Vol. 11, No. 4, pp. 269–273, 1999.
2.
Zurück zum Zitat Kawasaki, H., T. Komatsu and K. Uchiyama, Dexterous Anthropomorphic Robot Hand with Distributed Tactile Sensor: Gifu Hand II, IEEE/ASME Trans. On Mechatronics, Vol. 7, No. 3, pp. 296–303, 2002. Kawasaki, H., T. Komatsu and K. Uchiyama, Dexterous Anthropomorphic Robot Hand with Distributed Tactile Sensor: Gifu Hand II, IEEE/ASME Trans. On Mechatronics, Vol. 7, No. 3, pp. 296–303, 2002.
3.
Zurück zum Zitat Namiki, A., Y. Imai, M. Kaneko and M. Ishikawa, Development of a High-speed Multifingered Hand System, Proc. of Int. Conf. on Intelligent Manipulation and Grasping, Genova-Itary, pp.85-90, 2004. Namiki, A., Y. Imai, M. Kaneko and M. Ishikawa, Development of a High-speed Multifingered Hand System, Proc. of Int. Conf. on Intelligent Manipulation and Grasping, Genova-Itary, pp.85-90, 2004.
4.
Zurück zum Zitat Kaneko, K., K. Harada and F. Kanehiro, Development of Multi-Fingered Hand for Life-size Humanoid Robots, Proc. of IEEE Int. Conf. on Robotics and Autom., pp. 913–920, 2007. Kaneko, K., K. Harada and F. Kanehiro, Development of Multi-Fingered Hand for Life-size Humanoid Robots, Proc. of IEEE Int. Conf. on Robotics and Autom., pp. 913–920, 2007.
5.
Zurück zum Zitat Bae, J. H., S.W. Park, J.H. Park, M.H.Baeg, D.Kim and S.R. Oh, Development of Low Cost Anthro-pomorphic Robot Hand with High Capability, Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4776–4782, 2012. Bae, J. H., S.W. Park, J.H. Park, M.H.Baeg, D.Kim and S.R. Oh, Development of Low Cost Anthro-pomorphic Robot Hand with High Capability, Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4776–4782, 2012.
6.
Zurück zum Zitat Salisbury, K. and B. Roth, Kinematics and force analysis of articulate mechanical hands, ASME J. Mechanism, Transmissions and Autom. In Design, Vol. 105, pp. 35–41, 1983. Salisbury, K. and B. Roth, Kinematics and force analysis of articulate mechanical hands, ASME J. Mechanism, Transmissions and Autom. In Design, Vol. 105, pp. 35–41, 1983.
7.
Zurück zum Zitat Maekawa, H., et al., Development of Three-Fingered Robot Hand with Stiffness Control Capability, Mechanism, Vol. 2, No. 5, pp. 483–494, 1992. Maekawa, H., et al., Development of Three-Fingered Robot Hand with Stiffness Control Capability, Mechanism, Vol. 2, No. 5, pp. 483–494, 1992.
8.
Zurück zum Zitat Lovchik, C.S. and M.A. Diftler, The Robonaut Hand: A Dextrous Robot Hand for Space, Proc. of the 1999 IEEE Int. Conf. on Robotics and Autom, pp. 907–912, 1999. Lovchik, C.S. and M.A. Diftler, The Robonaut Hand: A Dextrous Robot Hand for Space, Proc. of the 1999 IEEE Int. Conf. on Robotics and Autom, pp. 907–912, 1999.
9.
Zurück zum Zitat Grebenstein, M., M. Chalon, G. Hirzinger and R. Siegwart, Antagonistically Driven Finger Design for the Anthropomorphic DLR Hand Arm System, Proc. of IEEE-RAS Int. Conf. on Humanoid Robots, pp. 609–616, 2010. Grebenstein, M., M. Chalon, G. Hirzinger and R. Siegwart, Antagonistically Driven Finger Design for the Anthropomorphic DLR Hand Arm System, Proc. of IEEE-RAS Int. Conf. on Humanoid Robots, pp. 609–616, 2010.
10.
Zurück zum Zitat Lee, Y-T, H-R Choi, W-K Chung and Y. Youm, Stiffness Control of a Coupled Tendon-Driven Robot Hand, IEEE Control Systems, pp.10-19, 1994. Lee, Y-T, H-R Choi, W-K Chung and Y. Youm, Stiffness Control of a Coupled Tendon-Driven Robot Hand, IEEE Control Systems, pp.10-19, 1994.
11.
Zurück zum Zitat Massa, B., S. Roccella, M. C. Carrozza and P. Dario, Design and Development of an Underactuated Prosthetic Hand, Proc. Of the IEEE Int. Conf. on Robotics and Autom., pp. 3374–3379, 2002. Massa, B., S. Roccella, M. C. Carrozza and P. Dario, Design and Development of an Underactuated Prosthetic Hand, Proc. Of the IEEE Int. Conf. on Robotics and Autom., pp. 3374–3379, 2002.
13.
Zurück zum Zitat Carrozza, M. C., G. Cappiello, S. Micera \(\cdot \)B. B. Edin, L. Beccai, C. Cipriani: Design of a cybernetic hand for perception and action, Biol Cybern 95, pp. 629–644, 2006. Carrozza, M. C., G. Cappiello, S. Micera \(\cdot \)B. B. Edin, L. Beccai, C. Cipriani: Design of a cybernetic hand for perception and action, Biol Cybern 95, pp. 629–644, 2006.
14.
Zurück zum Zitat Kamikawa, Y., and T. Maeno: Underactuated Five-Finger Prosthetic Hand Inspired by Grasping Force Distribution of Humans, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 717–722, 2008. Kamikawa, Y., and T. Maeno: Underactuated Five-Finger Prosthetic Hand Inspired by Grasping Force Distribution of Humans, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 717–722, 2008.
15.
Zurück zum Zitat Gosselin, C., F. Pelletier and T. Laliberte, An Anthropomorphic Underactuated Robotic Hand with 15 Dofs and a Single Actuator, Proc. of IEEE Int. Conf. on Robotics and Autom., pp. 609–616, 2008. Gosselin, C., F. Pelletier and T. Laliberte, An Anthropomorphic Underactuated Robotic Hand with 15 Dofs and a Single Actuator, Proc. of IEEE Int. Conf. on Robotics and Autom., pp. 609–616, 2008.
16.
Zurück zum Zitat Kim, Y.J., J. W. Lee and K. M. Park, A Human-lime Robotic Hand with a Highly Efficient and Backdrivable Mechanism, Proc. of the 9th Int. Symp. On Robot Control (SYROCO’09), pp. 391–396, 2009. Kim, Y.J., J. W. Lee and K. M. Park, A Human-lime Robotic Hand with a Highly Efficient and Backdrivable Mechanism, Proc. of the 9th Int. Symp. On Robot Control (SYROCO’09), pp. 391–396, 2009.
17.
Zurück zum Zitat Wiste, T. E., S. A. Dalley, T. J. Withrow and M. Goldfarb: Design of a Multifunctional Anthropomorphic Prosthetic Hand with Extrinsic Actuation, Proc. of IEEE 11th International Conf. on Rehabilitation Robotics, pp. 675–681, 2009. Wiste, T. E., S. A. Dalley, T. J. Withrow and M. Goldfarb: Design of a Multifunctional Anthropomorphic Prosthetic Hand with Extrinsic Actuation, Proc. of IEEE 11th International Conf. on Rehabilitation Robotics, pp. 675–681, 2009.
18.
Zurück zum Zitat Grioli, G., M. Catalano, E. Silvestro, S. Tono and A. Bicchi, Adaptive Synergies: an Approach to the Design of Under-Actuated Robotic Hands, Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, pp. 1252–1256, 2012. Grioli, G., M. Catalano, E. Silvestro, S. Tono and A. Bicchi, Adaptive Synergies: an Approach to the Design of Under-Actuated Robotic Hands, Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, pp. 1252–1256, 2012.
19.
Zurück zum Zitat Huang, H., L. Jiang, Y. Liu, L. Hou, H. Cai and H. Liu, The Mechanical Design and Experiments of HIT/DLR Prosthetic Hand, Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, pp. 896–901, 2006. Huang, H., L. Jiang, Y. Liu, L. Hou, H. Cai and H. Liu, The Mechanical Design and Experiments of HIT/DLR Prosthetic Hand, Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, pp. 896–901, 2006.
20.
Zurück zum Zitat Englehart, K and B. Hudgins: A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control, IEEE Trans. On Biomedical Engineering, 50(7), pp. 848–854, 2003. Englehart, K and B. Hudgins: A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control, IEEE Trans. On Biomedical Engineering, 50(7), pp. 848–854, 2003.
21.
Zurück zum Zitat Jun-Uk Chu, J.U., I. Moon, S. K. Kim, and M. S. Mun: Control of Multifunction Myoelectric Hand using a Real-Time EMG Pattern Recognition, Proc IEEE/RSJ Int. Conf. Intell. Robots Syst, pp. 3511–3516, 2005. Jun-Uk Chu, J.U., I. Moon, S. K. Kim, and M. S. Mun: Control of Multifunction Myoelectric Hand using a Real-Time EMG Pattern Recognition, Proc IEEE/RSJ Int. Conf. Intell. Robots Syst, pp. 3511–3516, 2005.
22.
Zurück zum Zitat Shenoy, P., K. J. Miller, B. Crawford, and R. P. N. Rao: Online Electromyographic Control of a Robotic Prosthesis, IEEE Trans. on Biomedical Engin., 55 (3), pp. 1128–1135, 2008. Shenoy, P., K. J. Miller, B. Crawford, and R. P. N. Rao: Online Electromyographic Control of a Robotic Prosthesis, IEEE Trans. on Biomedical Engin., 55 (3), pp. 1128–1135, 2008.
23.
Zurück zum Zitat Cipriani, C., C. Antfolk, M. Controzzi, G. Lundborg, B. Rosén, M. C. Carrozza, and F. Sebelius: Online Myoelectric Control of a Dexterous Hand Prosthesis by Transradial Amputees, IEEE Trans. On Neural Systems and Rehabilitation Engin., 19(3), pp. 260–270, 2011. Cipriani, C., C. Antfolk, M. Controzzi, G. Lundborg, B. Rosén, M. C. Carrozza, and F. Sebelius: Online Myoelectric Control of a Dexterous Hand Prosthesis by Transradial Amputees, IEEE Trans. On Neural Systems and Rehabilitation Engin., 19(3), pp. 260–270, 2011.
24.
Zurück zum Zitat Matrone1, G. C., C. Cipriani, M. C. Carrozza and G. Magenes: Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis, J. of Neuro-Engineering and Rehabilitation, 9(40), 2012. Matrone1, G. C., C. Cipriani, M. C. Carrozza and G. Magenes: Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis, J. of Neuro-Engineering and Rehabilitation, 9(40), 2012.
25.
Zurück zum Zitat Scheme, E., K. Englehart: Electromyogram Pattern Recognition for Control of Powered Upper-Limb Prostheses: State of the Art and Challenges for Clinical Use, Journal of Rehabilitation Research & Development, 48(6), p. 643–659, 2011. Scheme, E., K. Englehart: Electromyogram Pattern Recognition for Control of Powered Upper-Limb Prostheses: State of the Art and Challenges for Clinical Use, Journal of Rehabilitation Research & Development, 48(6), p. 643–659, 2011.
26.
Zurück zum Zitat Koganezawa, K., Artificial Finger with Shape-Fitting Mechanism, Proc. of the International Conference on Intelligent Manipulation and Grasping, pp. 103–109, Genova, Italy, 2004. Koganezawa, K., Artificial Finger with Shape-Fitting Mechanism, Proc. of the International Conference on Intelligent Manipulation and Grasping, pp. 103–109, Genova, Italy, 2004.
27.
Zurück zum Zitat Koganezawa, K. and Y. Ishizuka, Novel Mechanism of Artificial Finger using Double Planetary Gear System, Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3184–3191, Nice, France, Sept 22–26, 2008. Koganezawa, K. and Y. Ishizuka, Novel Mechanism of Artificial Finger using Double Planetary Gear System, Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3184–3191, Nice, France, Sept 22–26, 2008.
28.
Zurück zum Zitat Koganezawa, K, Back-drivable and Inherently Safe Mechanism for Artificial Finger, Robotics Science and Systems IV, The MIT Press, pp.57-63, 2010 Koganezawa, K, Back-drivable and Inherently Safe Mechanism for Artificial Finger, Robotics Science and Systems IV, The MIT Press, pp.57-63, 2010
29.
Zurück zum Zitat Koganezawa, K and A. Ito, Artificial Hand Based on the Planetary Gear System, Proc. of the International Conference on Mechatronics and Automation (ICMA), pp. 645–650, Takamatsu, Japan, 2013. Koganezawa, K and A. Ito, Artificial Hand Based on the Planetary Gear System, Proc. of the International Conference on Mechatronics and Automation (ICMA), pp. 645–650, Takamatsu, Japan, 2013.
30.
Zurück zum Zitat Martin, E. and T. L. C. Gosselin, SARAH Hand Used for Space Operations on STVF Robot, Proc. of the International Conference on Intelligent Manipulation and Grasping, pp. 279–284, Genova, Italy, 2004. Martin, E. and T. L. C. Gosselin, SARAH Hand Used for Space Operations on STVF Robot, Proc. of the International Conference on Intelligent Manipulation and Grasping, pp. 279–284, Genova, Italy, 2004.
31.
Zurück zum Zitat A. D. Keller, C. L. Taylor and V. Zahm, Studies to determine the functional requirements for hand & arm prostheses, Dept. of Engr., UCLA., CA, 1947. A. D. Keller, C. L. Taylor and V. Zahm, Studies to determine the functional requirements for hand & arm prostheses, Dept. of Engr., UCLA., CA, 1947.
Metadaten
Titel
Artificial Hand with Stiffness Adjuster
verfasst von
K. Koganezawa
A. Ito
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-08338-4_78