Skip to main content

2021 | OriginalPaper | Buchkapitel

9. Artificial Intelligence for Disease Identification and Diagnosis

verfasst von : A. Lakshmi Muddana, Krishna Keerthi Chennam, V. Revathi

Erschienen in: The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Application of Artificial Intelligence (AI) has revolutionized many sectors like healthcare, agriculture, finance, computer vision, ecommerce, social media, data security, and education. AI plays a vital role in the health sector, like detecting, diagnosing, predicting diseases in advance to reduce the suffering and mortality rate. Besides, application of AI techniques improves hospital management and detection of health insurance fraud. With increased automation in the medical sector, advancements in image acquisition devices and availability of personal wearable devices at affordable cost, voluminous data are being generated. Deep learning techniques can leverage this big data with powerful Graphical Processing Unit (GPU) based systems to analyze and detect hidden patterns in the data and gain insights. Deep learning techniques can learn features from big data sets to get insights that will assist doctors in early diagnosis and treatment. Medical data analysis faces many challenges like limited data availability due to privacy issues, unbalanced data sets for diseases like cancer and rare disease, unavailability of specialists for labeling the data, variation in the experts’ opinion in decision making, variability in genes, environment, and lifestyle of individuals. This chapter discusses the techniques for dealing with the challenges of medical data processing. It also presents the AI techniques for identifying and predicting different types of cancer, diabetes, cardiac, and rare diseases at an early stage using data sets of different formats like clinical data, gene expression data, and medical images. The chapter includes the sections that discuss the methods to deal with unbalanced, small, and high-dimensional data sets, data and label denoising methods, and feature representation learning using neural networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amini, A., Chen, W., Fortino, G., Li, Y., Pan, Y. & Wang, M. D. (2020). Editorial: Special issue on AI-driven informatics, sensing, imaging and big data analytics for fighting the covid-19 pandemic. IEEE Journal of Biomedical and Health Informatics, 24(10). Amini, A., Chen, W., Fortino, G., Li, Y., Pan, Y. & Wang, M. D. (2020). Editorial: Special issue on AI-driven informatics, sensing, imaging and big data analytics for fighting the covid-19 pandemic. IEEE Journal of Biomedical and Health Informatics, 24(10).
2.
Zurück zum Zitat Iyengar, S., Bonda, F. T., Gravina, R., Guerrieri, A., Fortino, G., & Sangiovanni Vincentelli, A., 2008, March. A framework for creating healthcare monitoring applications using wireless body sensor networks. In Proceedings of the ICST 3rd international conference on body area networks (pp. 1–2). Iyengar, S., Bonda, F. T., Gravina, R., Guerrieri, A., Fortino, G., & Sangiovanni Vincentelli, A., 2008, March. A framework for creating healthcare monitoring applications using wireless body sensor networks. In Proceedings of the ICST 3rd international conference on body area networks (pp. 1–2).
3.
Zurück zum Zitat Piccialli, F., Di Somma, V., Giampaolo, F., Cuomo, S., & Fortino, G. (2021). A survey on deep learning in medicine: Why, how and when? Information Fusion, 66, 111–137.CrossRef Piccialli, F., Di Somma, V., Giampaolo, F., Cuomo, S., & Fortino, G. (2021). A survey on deep learning in medicine: Why, how and when? Information Fusion, 66, 111–137.CrossRef
4.
Zurück zum Zitat Wang, Z., Wu, D., Gravina, R., Fortino, G., Jiang, Y., & Tang, K. (2017). Kernel fusion-based extreme learning machine for cross-location activity recognition. Information Fusion, 37, 1–9.CrossRef Wang, Z., Wu, D., Gravina, R., Fortino, G., Jiang, Y., & Tang, K. (2017). Kernel fusion-based extreme learning machine for cross-location activity recognition. Information Fusion, 37, 1–9.CrossRef
5.
Zurück zum Zitat Chatterjee, R., Maitra, T., Islam, S. H., Hassan, M. M., Alamri, A., & Fortino, G. (2019). A novel machine learning-based feature selection for motor imagery EEG signal classification in internet of medical things environment. Future Generation Computer Systems, 98, 419–434.CrossRef Chatterjee, R., Maitra, T., Islam, S. H., Hassan, M. M., Alamri, A., & Fortino, G. (2019). A novel machine learning-based feature selection for motor imagery EEG signal classification in internet of medical things environment. Future Generation Computer Systems, 98, 419–434.CrossRef
6.
Zurück zum Zitat Aluvalu, R., & Muddana, L. (2016). A dynamic attribute-based risk aware access control model (DA-RAAC) for cloud computing. 2016 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE. Aluvalu, R., & Muddana, L. (2016). A dynamic attribute-based risk aware access control model (DA-RAAC) for cloud computing. 2016 IEEE international conference on computational intelligence and computing research (ICCIC). IEEE.
7.
Zurück zum Zitat Köse, T., Özgür, S., Coşgun, E., Keskinoğlu, A., & Keskinoğlu, P. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 64(5), 402–406.CrossRef Köse, T., Özgür, S., Coşgun, E., Keskinoğlu, A., & Keskinoğlu, P. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology, 64(5), 402–406.CrossRef
8.
Zurück zum Zitat Leke, C. A., & Marwala, T. (2019). Introduction to missing data estimation. In Deep learning and missing data in engineering systems of studies in big data (Vol. 48, pp. 1–20). Springer.CrossRef Leke, C. A., & Marwala, T. (2019). Introduction to missing data estimation. In Deep learning and missing data in engineering systems of studies in big data (Vol. 48, pp. 1–20). Springer.CrossRef
9.
Zurück zum Zitat Sterne, J. A. C., White, I. R., Carlin, J. B., et al. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ, 338(1), b2393.CrossRef Sterne, J. A. C., White, I. R., Carlin, J. B., et al. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ, 338(1), b2393.CrossRef
10.
Zurück zum Zitat Wells, B. J., Nowacki, A. S., Chagin, K., & Kattan, M. W. (2017). Strategies for handling missing data in electronic health record derived data. eGEMs (Generating Evidence & Methods to Improve Patient Outcomes), 1(3). Wells, B. J., Nowacki, A. S., Chagin, K., & Kattan, M. W. (2017). Strategies for handling missing data in electronic health record derived data. eGEMs (Generating Evidence & Methods to Improve Patient Outcomes), 1(3).
11.
Zurück zum Zitat Brodley, C. E., & Fried, M. A. (1999). Identifying mislabeled training data. Journal of Artificial Intelligence Research, 11, 131–167.CrossRef Brodley, C. E., & Fried, M. A. (1999). Identifying mislabeled training data. Journal of Artificial Intelligence Research, 11, 131–167.CrossRef
12.
Zurück zum Zitat Ghosh, A., Manwani, N., & Sastry, P. S. (2015). Making risk minimization tolerant to label noise. Elsevier Neurocomputing, 160, 93–107.CrossRef Ghosh, A., Manwani, N., & Sastry, P. S. (2015). Making risk minimization tolerant to label noise. Elsevier Neurocomputing, 160, 93–107.CrossRef
13.
Zurück zum Zitat Speth, J., & Hand, E. M. (2019). Automated label noise identification for facial attribute recognition. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops (pp. 25–28). Speth, J., & Hand, E. M. (2019). Automated label noise identification for facial attribute recognition. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops (pp. 25–28).
15.
Zurück zum Zitat Nigam, N., Dutta, T., & Hari, P. G. (2019). Impact of noisy labels in learning techniques: A survey. In Conference: Advances in data and information sciences. Nigam, N., Dutta, T., & Hari, P. G. (2019). Impact of noisy labels in learning techniques: A survey. In Conference: Advances in data and information sciences.
16.
Zurück zum Zitat Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRef Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRef
17.
Zurück zum Zitat Rudin, L. I., & Osher, S.. Total variation-based image restoration with free local constraints. Image Processing, 1994. Proceedings. ICIP-94. IEEE international conference (Vol. 1). IEEE. Rudin, L. I., & Osher, S.. Total variation-based image restoration with free local constraints. Image Processing, 1994. Proceedings. ICIP-94. IEEE international conference (Vol. 1). IEEE.
18.
Zurück zum Zitat Coifman, R. R., & Donoho, D. L. (1995). Translation-invariant denoising. Springer.MATH Coifman, R. R., & Donoho, D. L. (1995). Translation-invariant denoising. Springer.MATH
19.
Zurück zum Zitat Yaroslavsky, L. P., Egiazarian, K. O., & Astola, J. T.. (2001). Transform domain image restoration methods: Review, comparison, and interpretation. Photonics west 2001-electronic imaging. International Society for Optics and Photonics. Yaroslavsky, L. P., Egiazarian, K. O., & Astola, J. T.. (2001). Transform domain image restoration methods: Review, comparison, and interpretation. Photonics west 2001-electronic imaging. International Society for Optics and Photonics.
20.
Zurück zum Zitat Portilla, J., et al. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.MathSciNetCrossRef Portilla, J., et al. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.MathSciNetCrossRef
21.
Zurück zum Zitat Gondara, L. (2016). Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE 16th international conference on data mining workshops (ICDMW), Barcelona, Spain (pp. 241–246). Gondara, L. (2016). Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE 16th international conference on data mining workshops (ICDMW), Barcelona, Spain (pp. 241–246).
22.
Zurück zum Zitat Buades, A., Coll, B., & Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490–530.MathSciNetCrossRef Buades, A., Coll, B., & Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490–530.MathSciNetCrossRef
23.
Zurück zum Zitat Dabov, K., et al. (2007). Image denoising by sparse 3-D transform domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef Dabov, K., et al. (2007). Image denoising by sparse 3-D transform domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef
24.
Zurück zum Zitat Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325.CrossRef Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325.CrossRef
25.
Zurück zum Zitat Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.MathSciNetCrossRef Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.MathSciNetCrossRef
26.
Zurück zum Zitat Mairal, J., et al. (2009). Online dictionary learning for sparse coding. Proceedings of the 26th annual international conference on machine learning. ACM. Mairal, J., et al. (2009). Online dictionary learning for sparse coding. Proceedings of the 26th annual international conference on machine learning. ACM.
27.
Zurück zum Zitat Vincent, P., et al. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th international conference on machine learning. ACM. Vincent, P., et al. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th international conference on machine learning. ACM.
28.
Zurück zum Zitat Akkalakshmi, M., Riyazuddin, Y. M., Revathi, V., & Pal, A. (2020). Autoencoder-based feature learning and up-sampling to enhance cancer prediction. International Journal of Future Generation Communication and Networking, 13(1), 1453–1459. Akkalakshmi, M., Riyazuddin, Y. M., Revathi, V., & Pal, A. (2020). Autoencoder-based feature learning and up-sampling to enhance cancer prediction. International Journal of Future Generation Communication and Networking, 13(1), 1453–1459.
29.
Zurück zum Zitat Payan, A., & Montana, G. (2015). Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506. Payan, A., & Montana, G. (2015). Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506.
31.
Zurück zum Zitat Wong, K. K., Fortino, G., & Abbott, D. (2020). Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 110, 802–811.CrossRef Wong, K. K., Fortino, G., & Abbott, D. (2020). Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 110, 802–811.CrossRef
32.
Zurück zum Zitat Khan, S. R., Sikandar, M., Almogren, A., Din, I. U., Guerrieri, A., & Fortino, G. (2020). IoMT-based computational approach for detecting brain tumor. Future Generation Computer Systems, 109, 360–367.CrossRef Khan, S. R., Sikandar, M., Almogren, A., Din, I. U., Guerrieri, A., & Fortino, G. (2020). IoMT-based computational approach for detecting brain tumor. Future Generation Computer Systems, 109, 360–367.CrossRef
33.
Zurück zum Zitat Jabbar, M. A., Aluvalu, R., & Reddy, S. (2017). Cluster-based ensemble classification for intrusion detection system. In Proceedings of the 9th international conference on machine learning and computing (pp. 253–257). ACM. Jabbar, M. A., Aluvalu, R., & Reddy, S. (2017). Cluster-based ensemble classification for intrusion detection system. In Proceedings of the 9th international conference on machine learning and computing (pp. 253–257). ACM.
34.
Zurück zum Zitat Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., & Madabhushi, A. (2016). Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 35, 119–130.CrossRef Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., & Madabhushi, A. (2016). Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 35, 119–130.CrossRef
36.
Zurück zum Zitat Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2020). CNN-based health model for regular health factors analysis in internet-of-medical things environment. IEEE Access, 8, 52541–52549.CrossRef Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2020). CNN-based health model for regular health factors analysis in internet-of-medical things environment. IEEE Access, 8, 52541–52549.CrossRef
37.
Zurück zum Zitat Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.CrossRef Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.CrossRef
38.
Zurück zum Zitat Zhang, R., Zheng, Y., Mak, T. W. C., Yu, R., Wong, S. H., Lau, J. Y., & Poon, C. C. (2017). Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics, 21(1), 41–47.CrossRef Zhang, R., Zheng, Y., Mak, T. W. C., Yu, R., Wong, S. H., Lau, J. Y., & Poon, C. C. (2017). Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics, 21(1), 41–47.CrossRef
39.
Zurück zum Zitat Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., & Valle, E. (2017). Knowledge transfer for melanoma screening with deep learning. In International symposium on biomedical imaging (ISBI) (pp. 297–300). IEEE. Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., & Valle, E. (2017). Knowledge transfer for melanoma screening with deep learning. In International symposium on biomedical imaging (ISBI) (pp. 297–300). IEEE.
40.
Zurück zum Zitat Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A., Van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.CrossRef Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A., Van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.CrossRef
Metadaten
Titel
Artificial Intelligence for Disease Identification and Diagnosis
verfasst von
A. Lakshmi Muddana
Krishna Keerthi Chennam
V. Revathi
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75220-0_9

Neuer Inhalt