Skip to main content

2017 | OriginalPaper | Buchkapitel

21. Artificial Neural Networks Modeling of a Karstic Watershed in Mount Lebanon

verfasst von : Antoine Allam, Wajdi Najem

Erschienen in: EuroKarst 2016, Neuchâtel

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When applied to hydrology, the artificial neural networks (ANN) offer multiple advantages over conventional rainfall–runoff models. It was very interesting to assess the ANN performance over one of Mount Lebanon watersheds characterized by their nonlinear hydrologic regime due to the karstic nature, geomorphology and heterogeneous precipitation of rain and snow. The time delay neural network (TDNN) models in this study were assessed for their ability to simulate highly karstified watershed with little precipitation data, especially concerning snow contribution and for their ability to simulate fluctuated river flows. The selected watershed for this study was Nahr Ibrahim watershed with an area of 329 km2 and an upper part located above 1700 m altitude taking part of the Cenomanian Plateau of Mount Lebanon. This karstic plateau is a stage for snow accumulation during winter and snowmelt during spring. The snowmelt is discharged by underneath karstic springs of Afqa and Roueiss, main contributors to Nahr Ibrahim flow. To achieve a better comprehension of the hydrologic regime, annual simulations with daily time step were conducted in this study. A simple snowmelt model was coupled with TDNN model (A) to makeup the lack of snow data. Model (A) which registered a considerable performance Nash criteria reaching 0.73 for the karstic springs and 0.66 for the watershed. However, two other methods were applied: the first, model (B), using BFImax separation method which yielded a high performance of 0.95 and the second, model (C) with spring flows as input data which yielded 0.87. In this study, only nonlinear input output neural network was applied to avoid autoregressive models which would have definitely returned higher performances due to the long term rainfall–runoff correlation of the springs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aouad-Rizk, A., Job, J., Khalil, S., Touma, T., Bitar, C., Bocquillon, C., & Najem, W. (2005). Snow in Lebanon: a preliminary study of snowcover over Mount Lebanon and a simple snowmelt model. Hydrological Sciences Journal, 50(3), 555-569. Aouad-Rizk, A., Job, J., Khalil, S., Touma, T., Bitar, C., Bocquillon, C., & Najem, W. (2005). Snow in Lebanon: a preliminary study of snowcover over Mount Lebanon and a simple snowmelt model. Hydrological Sciences Journal, 50(3), 555-569.
Zurück zum Zitat COE. (1956). Snow hydrology. Portland, OR: United States Army, Corps of Engineers. COE. (1956). Snow hydrology. Portland, OR: United States Army, Corps of Engineers.
Zurück zum Zitat Dreyfus, G. et al. (2002). Réseaux de neurones: Méthodologie et applications. Dreyfus, G. et al. (2002). Réseaux de neurones: Méthodologie et applications.
Zurück zum Zitat Eckhardt, K. (2005). How to Construct Recursive Digital Filters for Baseflow Separation. Hydrological Processes, 507-515. Eckhardt, K. (2005). How to Construct Recursive Digital Filters for Baseflow Separation. Hydrological Processes, 507-515.
Zurück zum Zitat Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 251-257. Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 251-257.
Zurück zum Zitat Hreiche, A. (2003). Modelisation Conceptuelle de la transformationpluie-debit dans le contexte mediterranéen. Montpellier: University of Montpellier. Hreiche, A. (2003). Modelisation Conceptuelle de la transformationpluie-debit dans le contexte mediterranéen. Montpellier: University of Montpellier.
Zurück zum Zitat Hreiche, A., & Najem, W. (2007). Hydrological impact simulations of climate change on Lebanese Coastal Rivers. Hydrological Sceinces Journal, 1119-1133. Hreiche, A., & Najem, W. (2007). Hydrological impact simulations of climate change on Lebanese Coastal Rivers. Hydrological Sceinces Journal, 1119-1133.
Zurück zum Zitat IGH. (2012). International Glossary of Hydrology. WMO. IGH. (2012). International Glossary of Hydrology. WMO.
Zurück zum Zitat Iyer, M. S., & Rhinehart, R. R. (1999). A Method to Determine the Required Number of Neural-Network Training Repetitions. IEEE TRANSACTIONS ON NEURAL NETWORKS, 427-432. Iyer, M. S., & Rhinehart, R. R. (1999). A Method to Determine the Required Number of Neural-Network Training Repetitions. IEEE TRANSACTIONS ON NEURAL NETWORKS, 427-432.
Zurück zum Zitat Johannet, A. (1994). Subterranean Water Infiltration Modelling by Neural Networks :. ICANN. Sorrento. Johannet, A. (1994). Subterranean Water Infiltration Modelling by Neural Networks :. ICANN. Sorrento.
Zurück zum Zitat Kong A Siou, L., Johannet, A., Borrell, V., & Pistre, S. (2011). Complexity selection of a neural network model for karst flood forecasting: The case of the Lez Basin (southern France). Volume 406,(Issues 1–2). Kong A Siou, L., Johannet, A., Borrell, V., & Pistre, S. (2011). Complexity selection of a neural network model for karst flood forecasting: The case of the Lez Basin (southern France). Volume 406,(Issues 1–2).
Zurück zum Zitat Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I. Journal of Hydrology, 282-290. Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I. Journal of Hydrology, 282-290.
Zurück zum Zitat Waibel, A., Toshiyuki, H., & Geoffrey, H. (1989). Phoeneme Recognition Using Time-Delay Neural Network. 37(3). Waibel, A., Toshiyuki, H., & Geoffrey, H. (1989). Phoeneme Recognition Using Time-Delay Neural Network. 37(3).
Zurück zum Zitat Yamashita, Y. (1997). Time Delay Neural Networks for the Classification of Flow Regimes. 21. Yamashita, Y. (1997). Time Delay Neural Networks for the Classification of Flow Regimes. 21.
Zurück zum Zitat Zurada, J. M. (1992). Introduction to artificial neural systems application of neural network to rainfall runoff modeling. New York: West Publishing Co. Zurada, J. M. (1992). Introduction to artificial neural systems application of neural network to rainfall runoff modeling. New York: West Publishing Co.
Zurück zum Zitat Zuzel, J., & Cox, L. (1975). Relative importance of meteorological variables in snowmelt. Water Resources Research, 11(1):174-176. Zuzel, J., & Cox, L. (1975). Relative importance of meteorological variables in snowmelt. Water Resources Research, 11(1):174-176.
Metadaten
Titel
Artificial Neural Networks Modeling of a Karstic Watershed in Mount Lebanon
verfasst von
Antoine Allam
Wajdi Najem
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45465-8_21