Skip to main content

2018 | OriginalPaper | Buchkapitel

Artificial Viscosity Technique: A Riemann-Solver-Free Method for 2D Urban Flood Modelling on Complex Topography

verfasst von : Bobby Minola Ginting, Ralf-Peter Mundani

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study deals with a simulation of two-dimensional urban flood problems on complex topography based on a cell-centred finite volume (CCFV) scheme. Unlike many numerical models that use a Riemann solver to deal with discontinuities due to the rapid change of a flow regime (caused by very shallow water) or due to wet–dry problems, an artificial viscosity technique is used in this study to tackle numerical instabilities caused by such discontinuities. This technique is a Riemann-solver-free method for solving the shallow water equations and is constructed from a combination of a Laplacian and a biharmonic operator, in which the variable scaling factor is devised by using the spectral radius of the Jacobian matrix. For a time discretisation, the Runge–Kutta fourth-order scheme is then used to achieve high-order accuracy. In order to avoid a computational overhead, this Runge–Kutta scheme is applied in its hybrid formulation, in which the artificial viscosity is only computed once per time step. Another advantage of our technique is a simple computation of the convective flux which is performed only by averaging the left and right states of every edge instead of evaluating complex if-then-else statements as required in the Riemann solver such as Harten-Lax-van Leer-contact (HLLC) scheme. Other improvement aspects address both the proper treatment of the friction source term when dealing with very shallow water on very rough beds and an advanced wet–dry technique which is solely applied in an edge-based fashion. Our results show that this artificial viscosity technique is highly accurate for solving the shallow water equations. Also, we show that this technique is cheaper than the HLLC scheme and entails a much less computational complexity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anastasiou, K., & Chan, C. T. (1997). Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 24, 1225–1245.CrossRefMATH Anastasiou, K., & Chan, C. T. (1997). Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 24, 1225–1245.CrossRefMATH
2.
Zurück zum Zitat Leveque, R. J. (1998). Balancing source terms and flux gradients in high-resolution godunov-type methods. Journal of Computational Physics, 146(1), 346–365.MathSciNetCrossRefMATH Leveque, R. J. (1998). Balancing source terms and flux gradients in high-resolution godunov-type methods. Journal of Computational Physics, 146(1), 346–365.MathSciNetCrossRefMATH
3.
Zurück zum Zitat Fujihara, M., & Borthwick, A. G. L. (2000). Godunov-type solution of curvilinear shallow-water equations. Journal of Hydraulic Engineering ASCE, 126(11), 827–836.CrossRef Fujihara, M., & Borthwick, A. G. L. (2000). Godunov-type solution of curvilinear shallow-water equations. Journal of Hydraulic Engineering ASCE, 126(11), 827–836.CrossRef
4.
Zurück zum Zitat Toro, E. (2001). Shock-capturing methods for free-surface shallow flow. London: Wiley.MATH Toro, E. (2001). Shock-capturing methods for free-surface shallow flow. London: Wiley.MATH
5.
Zurück zum Zitat Zhou, J. G., Causon, D. M., Mingham, C. G., & Ingram, D. M. (2004). Numerical prediction of dam-break flows in general geometries with complex bed topography. Journal of Hydraulic Engineering ASCE, 130(4), 332–340.CrossRef Zhou, J. G., Causon, D. M., Mingham, C. G., & Ingram, D. M. (2004). Numerical prediction of dam-break flows in general geometries with complex bed topography. Journal of Hydraulic Engineering ASCE, 130(4), 332–340.CrossRef
6.
Zurück zum Zitat Mohammadian, A., & Le Roux, D. Y. (2006). Simulation of shallow flows over variable topographies using unstructured grids. International Journal for Numerical Methods in Fluids, 52(5), 473–498.MathSciNetCrossRefMATH Mohammadian, A., & Le Roux, D. Y. (2006). Simulation of shallow flows over variable topographies using unstructured grids. International Journal for Numerical Methods in Fluids, 52(5), 473–498.MathSciNetCrossRefMATH
7.
Zurück zum Zitat Delis, A. I., Nikolos, I. K., & Kazolea, M. (2011). Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flow. Archives of Computational Methods in Engineering, 18(1), 57–118.MathSciNetCrossRefMATH Delis, A. I., Nikolos, I. K., & Kazolea, M. (2011). Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flow. Archives of Computational Methods in Engineering, 18(1), 57–118.MathSciNetCrossRefMATH
8.
Zurück zum Zitat Murillo, J., & García-Navarro, P. (2012). Augmented versions of the HLL and HLLC riemann solvers including source terms in one and two Dimensions for shallow flow applications. Journal of Computational Physics, 231(20), 6861–6906.MathSciNetCrossRefMATH Murillo, J., & García-Navarro, P. (2012). Augmented versions of the HLL and HLLC riemann solvers including source terms in one and two Dimensions for shallow flow applications. Journal of Computational Physics, 231(20), 6861–6906.MathSciNetCrossRefMATH
9.
Zurück zum Zitat Hou, J., Simons, F., Mahgoub, M., & Hinkelmann, R. (2013). A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Computer Methods in Applied Mechanics and Engineering, 257, 126–149.MathSciNetCrossRefMATH Hou, J., Simons, F., Mahgoub, M., & Hinkelmann, R. (2013). A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography. Computer Methods in Applied Mechanics and Engineering, 257, 126–149.MathSciNetCrossRefMATH
10.
Zurück zum Zitat Delis, A. I., & Nikolos, I. K. (2013). A novel multidimensional solution reconstruction and edge-based limiting procedure for unstructured cell-centered finite volumes with application to shallow water dynamics. International Journal for Numerical Methods in Fluids, 71(5), 584–633.MathSciNetCrossRef Delis, A. I., & Nikolos, I. K. (2013). A novel multidimensional solution reconstruction and edge-based limiting procedure for unstructured cell-centered finite volumes with application to shallow water dynamics. International Journal for Numerical Methods in Fluids, 71(5), 584–633.MathSciNetCrossRef
11.
Zurück zum Zitat Liang, Q., & Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32, 873–884.CrossRef Liang, Q., & Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32, 873–884.CrossRef
12.
Zurück zum Zitat Ginting, B. M. (2017). A two-dimensional artificial viscosity technique for modelling discontinuity in shallow water flows. Applied Mathematical Modelling, 45, 653–683.MathSciNetCrossRef Ginting, B. M. (2017). A two-dimensional artificial viscosity technique for modelling discontinuity in shallow water flows. Applied Mathematical Modelling, 45, 653–683.MathSciNetCrossRef
13.
Zurück zum Zitat Jameson, A., Schmidt, W., & E. Turkel. (1981). Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In AIAA 14th Fluid and Plasma Dynamic Conference. Jameson, A., Schmidt, W., & E. Turkel. (1981). Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In AIAA 14th Fluid and Plasma Dynamic Conference.
14.
Zurück zum Zitat Jameson, A., & Mavriplis, D. (1986). Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA Journal, 24(4), 611–618.CrossRefMATH Jameson, A., & Mavriplis, D. (1986). Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA Journal, 24(4), 611–618.CrossRefMATH
15.
Zurück zum Zitat Mavriplis, D. (1987). Multigrid solution of the two-dimensional euler equations on unstructured triangular meshes. AIAA Journal, 26(7), 824–831.CrossRefMATH Mavriplis, D. (1987). Multigrid solution of the two-dimensional euler equations on unstructured triangular meshes. AIAA Journal, 26(7), 824–831.CrossRefMATH
16.
Zurück zum Zitat Van der Burg, A., Kuerten, J. G. M., & Zandbergen, P. J. (1992). Improved shock-capturing of Jameson’s scheme for the Euler equations. International Journal for Numerical Methods in Fluids, 15(6), 649–671.CrossRefMATH Van der Burg, A., Kuerten, J. G. M., & Zandbergen, P. J. (1992). Improved shock-capturing of Jameson’s scheme for the Euler equations. International Journal for Numerical Methods in Fluids, 15(6), 649–671.CrossRefMATH
17.
Zurück zum Zitat Swanson, R. C., Radespiel, R., & Turkel, E. (1998). On some numerical dissipation schemes. Journal of Computational Physics, 147(2), 518–544.MathSciNetCrossRefMATH Swanson, R. C., Radespiel, R., & Turkel, E. (1998). On some numerical dissipation schemes. Journal of Computational Physics, 147(2), 518–544.MathSciNetCrossRefMATH
18.
Zurück zum Zitat Ginting, B. M. (2011). Two dimensional flood propagation modeling generated by dam break using finite volume method. Master Thesis, Bandung Institute of Technology, Indonesia. Ginting, B. M. (2011). Two dimensional flood propagation modeling generated by dam break using finite volume method. Master Thesis, Bandung Institute of Technology, Indonesia.
19.
Zurück zum Zitat Ginting, B. M., Natakusumah, D. K., Harlan, D., & Ginting, H. (2012). Application of finite volume cell center method with wet and dry treatment in hydrodynamic flow modeling. In Proceeding of the Second International Conference on Port, Coastal, and Offshore Engineering, Bandung Institute of Technology, Indonesia. ISBN 9789799616128. Ginting, B. M., Natakusumah, D. K., Harlan, D., & Ginting, H. (2012). Application of finite volume cell center method with wet and dry treatment in hydrodynamic flow modeling. In Proceeding of the Second International Conference on Port, Coastal, and Offshore Engineering, Bandung Institute of Technology, Indonesia. ISBN 9789799616128.
20.
Zurück zum Zitat Ginting, B. M., Riyanto, B. A., & Ginting, H. (2013). Numerical simulation of dam break using finite volume method case study of Situ Gintung. In Proceedings of International Seminar on Water Related Disaster Solutions (vol 1, pp. 209–220). ISBN 978979988550. Ginting, B. M., Riyanto, B. A., & Ginting, H. (2013). Numerical simulation of dam break using finite volume method case study of Situ Gintung. In Proceedings of International Seminar on Water Related Disaster Solutions (vol 1, pp. 209–220). ISBN 978979988550.
21.
Zurück zum Zitat Kurganov, A., & Levy, D. (2002). Central-upwind schemes for the Saint-Venant system. M2AN Mathematical Modelling and Numerical Analysis, 36, 397–425.MathSciNetCrossRefMATH Kurganov, A., & Levy, D. (2002). Central-upwind schemes for the Saint-Venant system. M2AN Mathematical Modelling and Numerical Analysis, 36, 397–425.MathSciNetCrossRefMATH
22.
Zurück zum Zitat Kurganov, A., & Petrova, G. (2007). A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Communications in Mathematical Sciences, 5(1), 133–160.MathSciNetCrossRefMATH Kurganov, A., & Petrova, G. (2007). A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Communications in Mathematical Sciences, 5(1), 133–160.MathSciNetCrossRefMATH
23.
Zurück zum Zitat Wu, G., He, Z., & Liu, G. (2014). Development of a cell-centered godunov-type finite volume model for shallow water flow based on unstructured mesh. Mathematical Problems in Engineering. Wu, G., He, Z., & Liu, G. (2014). Development of a cell-centered godunov-type finite volume model for shallow water flow based on unstructured mesh. Mathematical Problems in Engineering.
24.
Zurück zum Zitat Murillo, J., García-Navarro, P., & Burguete, J. (2009). Time step restrictions for well-balanced shallow water solutions in non-zero velocity steady states. International Journal for Numerical Methods in Fluids, 60(12), 1351–1377.MathSciNetCrossRefMATH Murillo, J., García-Navarro, P., & Burguete, J. (2009). Time step restrictions for well-balanced shallow water solutions in non-zero velocity steady states. International Journal for Numerical Methods in Fluids, 60(12), 1351–1377.MathSciNetCrossRefMATH
25.
Zurück zum Zitat Morris, M. (2000). CADAM: Concerted action on dam-break modelling. Final report no. SR 571, HR Wallingford. Morris, M. (2000). CADAM: Concerted action on dam-break modelling. Final report no. SR 571, HR Wallingford.
26.
Zurück zum Zitat Soares-Frazão, S., Sillen, X., & Zech, Y. (1998). Dam-break flow through sharp bends physical model and 2D boltzmann model validation. In Proceedings of the CADAM Meeting, HR Wallingford, U.K. (151–169). Soares-Frazão, S., Sillen, X., & Zech, Y. (1998). Dam-break flow through sharp bends physical model and 2D boltzmann model validation. In Proceedings of the CADAM Meeting, HR Wallingford, U.K. (151–169).
27.
Zurück zum Zitat Liang, Q., Borthwick, A. G. L., & Stelling, G. (2004). Simulation of dam- and dyke-Break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids, 46(2), 127–162.CrossRefMATH Liang, Q., Borthwick, A. G. L., & Stelling, G. (2004). Simulation of dam- and dyke-Break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids, 46(2), 127–162.CrossRefMATH
28.
Zurück zum Zitat Tahershamsi, A., Hessaroeyeh, M.G., & Namin, M.M. (2010). Two dimensional modeling of dam-break flows. In Dittrich, Koll, Aberle & Geisenhainer (eds) River Flow Bundesanstalt für Wasserbau. ISBN 9783939230007. Tahershamsi, A., Hessaroeyeh, M.G., & Namin, M.M. (2010). Two dimensional modeling of dam-break flows. In Dittrich, Koll, Aberle & Geisenhainer (eds) River Flow Bundesanstalt für Wasserbau. ISBN 9783939230007.
29.
Zurück zum Zitat Prokof’ev, V. A. (2002). State-of-the-art numerical schemes based on the control volume method for modeling turbulent flows and dam-break waves. Power Technology and Engineering, 36(4), 235–242. Prokof’ev, V. A. (2002). State-of-the-art numerical schemes based on the control volume method for modeling turbulent flows and dam-break waves. Power Technology and Engineering, 36(4), 235–242.
30.
Zurück zum Zitat Néelz, S., & Pender, G. (2013). Benchmarking the latest generation of 2D hydraulic modelling packages. Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH. Néelz, S., & Pender, G. (2013). Benchmarking the latest generation of 2D hydraulic modelling packages. Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH.
Metadaten
Titel
Artificial Viscosity Technique: A Riemann-Solver-Free Method for 2D Urban Flood Modelling on Complex Topography
verfasst von
Bobby Minola Ginting
Ralf-Peter Mundani
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7218-5_4