Skip to main content

2018 | OriginalPaper | Buchkapitel

Aryl–Aryl Covalent Coupling on Rutile TiO2 Surfaces

verfasst von : Marek Kolmer, Jakub S. Prauzner-Bechcicki

Erschienen in: On-Surface Synthesis II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, enormous progress has been made in developing bottom-up strategies based on the polymerization of specially designed building blocks directly on a supporting surface. So far, selected noble metals have been mostly used as substrates for such on-surface chemical reactions. For the sake of practical applications the semiconductor surfaces clearly represent much more attractive platforms. Especially transition metal oxides exhibiting advantageous optical as well as photo- and electrochemical properties seem to be particularly interesting. In this chapter we describe the strategies for thermally triggered on-surface covalent coupling of aryl halides performed directly on rutile titanium dioxide surfaces. We focus our work on important parameters that need to be considered for understanding and optimization of the polymerization reactions on this model transition metal oxide system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007)CrossRef Grill, L., et al.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007)CrossRef
2.
Zurück zum Zitat Bieri, M., et al.: Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919–6921 (2009)CrossRef Bieri, M., et al.: Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919–6921 (2009)CrossRef
3.
Zurück zum Zitat Lipton-Duffin, J.A., et al.: Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5(5), 592–597 (2009)CrossRef Lipton-Duffin, J.A., et al.: Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5(5), 592–597 (2009)CrossRef
4.
Zurück zum Zitat Perepichka, D.F., Rosei, F.: Extending polymer conjugation into the second dimension. Science 323(5911), 216–217 (2009)CrossRef Perepichka, D.F., Rosei, F.: Extending polymer conjugation into the second dimension. Science 323(5911), 216–217 (2009)CrossRef
5.
Zurück zum Zitat Lafferentz, L., et al.: Conductance of a single conjugated polymer as a continuous function of its length. Science 323(5918), 1193–1197 (2009)CrossRef Lafferentz, L., et al.: Conductance of a single conjugated polymer as a continuous function of its length. Science 323(5918), 1193–1197 (2009)CrossRef
6.
Zurück zum Zitat Cai, J., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)CrossRef Cai, J., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)CrossRef
7.
Zurück zum Zitat Lafferentz, L., et al.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012)CrossRef Lafferentz, L., et al.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012)CrossRef
8.
Zurück zum Zitat Gourdon, A.: On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008)CrossRef Gourdon, A.: On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008)CrossRef
9.
Zurück zum Zitat Franc, G., Gourdon, A.: Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. Phys. Chem. Chem. Phys. 13, 14283–14292 (2011)CrossRef Franc, G., Gourdon, A.: Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. Phys. Chem. Chem. Phys. 13, 14283–14292 (2011)CrossRef
10.
Zurück zum Zitat Lindner, R., Kuhnle, A.: On-surface reactions. ChemPhysChem 16, 1582–1592 (2015)CrossRef Lindner, R., Kuhnle, A.: On-surface reactions. ChemPhysChem 16, 1582–1592 (2015)CrossRef
11.
Zurück zum Zitat Fan, Q., Gottfried, J.M., Zhu, J.: Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48(8), 2484–2494 (2015)CrossRef Fan, Q., Gottfried, J.M., Zhu, J.: Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48(8), 2484–2494 (2015)CrossRef
12.
Zurück zum Zitat Shen, Q., Gao, H.-Y., Fuchs, H.: Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017)CrossRef Shen, Q., Gao, H.-Y., Fuchs, H.: Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017)CrossRef
13.
Zurück zum Zitat Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135(15), 5768–5775 (2013)CrossRef Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135(15), 5768–5775 (2013)CrossRef
14.
Zurück zum Zitat Treier, M., et al.: Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3(1), 61–67 (2011)CrossRef Treier, M., et al.: Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3(1), 61–67 (2011)CrossRef
15.
Zurück zum Zitat Berner, N.C., et al.: Adsorption of 5,10,15,20-tetrakis (4-bromophenyl) porphyrin on germanium(001). Phys. Status Solidi C 9, 1404–1407 (2012)CrossRef Berner, N.C., et al.: Adsorption of 5,10,15,20-tetrakis (4-bromophenyl) porphyrin on germanium(001). Phys. Status Solidi C 9, 1404–1407 (2012)CrossRef
16.
Zurück zum Zitat Berner, N.C.: Towards stable molecular nanostructures on a semiconductor surface. School of Physics, Trinity College, University of Dublin, Dublin, Ireland (2012) Berner, N.C.: Towards stable molecular nanostructures on a semiconductor surface. School of Physics, Trinity College, University of Dublin, Dublin, Ireland (2012)
17.
Zurück zum Zitat Kolmer, M., et al.: Polymerization of polyanthrylene on a titanium dioxide (011)-(2×1) surface. Angew. Chem. Int. Ed. 52, 10300–10303 (2013)CrossRef Kolmer, M., et al.: Polymerization of polyanthrylene on a titanium dioxide (011)-(2×1) surface. Angew. Chem. Int. Ed. 52, 10300–10303 (2013)CrossRef
18.
Zurück zum Zitat Kolmer, M., et al.: On-surface polymerization on a semiconducting oxide: aryl halide coupling controlled by surface hydroxyl groups on rutile TiO2(011). Chem. Commun. 51, 11276–11279 (2015)CrossRef Kolmer, M., et al.: On-surface polymerization on a semiconducting oxide: aryl halide coupling controlled by surface hydroxyl groups on rutile TiO2(011). Chem. Commun. 51, 11276–11279 (2015)CrossRef
19.
Zurück zum Zitat Vasseur, G., et al.: Pi band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor. J. Am. Chem. Soc. 138(17), 5685–5692 (2016)CrossRef Vasseur, G., et al.: Pi band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor. J. Am. Chem. Soc. 138(17), 5685–5692 (2016)CrossRef
20.
Zurück zum Zitat Olszowski, P., et al.: Aryl halide C–C coupling on Ge(001): H surfaces. J. Phys. Chem. C 119(49), 27478–27482 (2015)CrossRef Olszowski, P., et al.: Aryl halide C–C coupling on Ge(001): H surfaces. J. Phys. Chem. C 119(49), 27478–27482 (2015)CrossRef
21.
Zurück zum Zitat Kittelmann, M., et al.: On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011)CrossRef Kittelmann, M., et al.: On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011)CrossRef
22.
Zurück zum Zitat Kittelmann, M., et al.: Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7(6), 5614–5620 (2013)CrossRef Kittelmann, M., et al.: Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7(6), 5614–5620 (2013)CrossRef
23.
Zurück zum Zitat Bieri, M., et al.: Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010)CrossRef Bieri, M., et al.: Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010)CrossRef
24.
Zurück zum Zitat Zebari, A.A.A., Kolmer, M., Prauzner-Bechcicki, J.S.: STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces. Beilstein J. Nanotechnol. 4, 927–932 (2013) Zebari, A.A.A., Kolmer, M., Prauzner-Bechcicki, J.S.: STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces. Beilstein J. Nanotechnol. 4, 927–932 (2013)
25.
Zurück zum Zitat Zebari, A.A.A., Kolmer, M., Prauzner-Bechcicki, J.S.: Characterization of PTCDA nanocrystals on Ge(001):H-(2 × 1) surfaces. Appl. Surf. Sci. 332, 403–408 (2015) Zebari, A.A.A., Kolmer, M., Prauzner-Bechcicki, J.S.: Characterization of PTCDA nanocrystals on Ge(001):H-(2 × 1) surfaces. Appl. Surf. Sci. 332, 403–408 (2015)
26.
Zurück zum Zitat Loske, F., et al.: Growth of ordered C-60 islands on TiO2(110). Nanotechnology 20(6) (2009) Loske, F., et al.: Growth of ordered C-60 islands on TiO2(110). Nanotechnology 20(6) (2009)
27.
Zurück zum Zitat Prauzner-Bechcicki, J.S., et al.: High-resolution STM studies of terephthalic acid molecules on rutile TiO2(110)-(1 × 1) surfaces. J. Phys. Chem. C 113(21), 9309–9315 (2009)CrossRef Prauzner-Bechcicki, J.S., et al.: High-resolution STM studies of terephthalic acid molecules on rutile TiO2(110)-(1 × 1) surfaces. J. Phys. Chem. C 113(21), 9309–9315 (2009)CrossRef
28.
Zurück zum Zitat Godlewski, S., et al.: Adsorption of organic molecules on the TiO2(011) surface: STM study. J. Chem. Phys. 134(22), 224701 (2011)CrossRef Godlewski, S., et al.: Adsorption of organic molecules on the TiO2(011) surface: STM study. J. Chem. Phys. 134(22), 224701 (2011)CrossRef
29.
Zurück zum Zitat Godlewski, S., et al.: Supramolecular ordering of PTCDA molecules: the key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state. ACS Nano 6(10), 8536–8545 (2012)CrossRef Godlewski, S., et al.: Supramolecular ordering of PTCDA molecules: the key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state. ACS Nano 6(10), 8536–8545 (2012)CrossRef
30.
Zurück zum Zitat Godlewski, S., et al.: [11]Anthrahelicene on TiO2 surfaces. Surf. Sci. 606(21–22), 1600–1607 (2012)CrossRef Godlewski, S., et al.: [11]Anthrahelicene on TiO2 surfaces. Surf. Sci. 606(21–22), 1600–1607 (2012)CrossRef
31.
Zurück zum Zitat Grinter, D.C., et al.: Binding of a benzoate dye-molecule analogue to rutile titanium dioxide surfaces. J Phys. Chem. C 116(1), 1020–1026 (2012)CrossRef Grinter, D.C., et al.: Binding of a benzoate dye-molecule analogue to rutile titanium dioxide surfaces. J Phys. Chem. C 116(1), 1020–1026 (2012)CrossRef
32.
Zurück zum Zitat English, C.R., et al.: Formation of self-assembled monolayers of pi-conjugated molecules on TiO2 surfaces by thermal grafting of aryl and benzyl halides. Langmuir 28(17), 6866–6876 (2012)CrossRef English, C.R., et al.: Formation of self-assembled monolayers of pi-conjugated molecules on TiO2 surfaces by thermal grafting of aryl and benzyl halides. Langmuir 28(17), 6866–6876 (2012)CrossRef
33.
Zurück zum Zitat Lanzilotto, V., et al.: Commensurate growth of densely packed PTCDI islands on the rutile TiO2(110) surface. J. Phys. Chem. C 117(24), 12639–12647 (2013)CrossRef Lanzilotto, V., et al.: Commensurate growth of densely packed PTCDI islands on the rutile TiO2(110) surface. J. Phys. Chem. C 117(24), 12639–12647 (2013)CrossRef
34.
Zurück zum Zitat Zając, Ł., et al.: Ordered heteromolecular overlayers formed by metal phthalocyanines and porphyrins on rutile titanium dioxide surface studied at room temperature. J. Chem. Phys. 143(22), 224702 (2015)CrossRef Zając, Ł., et al.: Ordered heteromolecular overlayers formed by metal phthalocyanines and porphyrins on rutile titanium dioxide surface studied at room temperature. J. Chem. Phys. 143(22), 224702 (2015)CrossRef
35.
Zurück zum Zitat Godlewski, S., et al.: Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces. Beilstein J. Nanotechnol. 6, 1498–1507 (2015)CrossRef Godlewski, S., et al.: Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces. Beilstein J. Nanotechnol. 6, 1498–1507 (2015)CrossRef
36.
Zurück zum Zitat Zajac, L., et al.: Self-assembling of Zn porphyrins on a (110) face of rutile TiO2–The anchoring role of carboxyl groups. Appl. Surf. Sci. 379, 277–281 (2016)CrossRef Zajac, L., et al.: Self-assembling of Zn porphyrins on a (110) face of rutile TiO2–The anchoring role of carboxyl groups. Appl. Surf. Sci. 379, 277–281 (2016)CrossRef
37.
Zurück zum Zitat Prauzner-Bechcicki, J.S., et al.: Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania. Beilstein J. Nanotechnol. 7, 1642–1653 (2016)CrossRef Prauzner-Bechcicki, J.S., et al.: Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania. Beilstein J. Nanotechnol. 7, 1642–1653 (2016)CrossRef
39.
Zurück zum Zitat Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)CrossRef Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53–229 (2003)CrossRef
40.
Zurück zum Zitat Pang, C.L., Lindsay, R., Thornton, G.: Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37(10), 2328–2353 (2008)CrossRef Pang, C.L., Lindsay, R., Thornton, G.: Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37(10), 2328–2353 (2008)CrossRef
41.
Zurück zum Zitat Dohnálek, Z., Lyubinetsky, I., Rousseau, R.: Thermally-driven processes on rutile TiO2(110)-(1 × 1): a direct view at the atomic scale. Prog. Surf. Sci. 85(5–8), 161–205 (2010)CrossRef Dohnálek, Z., Lyubinetsky, I., Rousseau, R.: Thermally-driven processes on rutile TiO2(110)-(1 × 1): a direct view at the atomic scale. Prog. Surf. Sci. 85(5–8), 161–205 (2010)CrossRef
42.
Zurück zum Zitat Thomas, A.G., Syres, K.L.: Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 41(11), 4207–4217 (2012)CrossRef Thomas, A.G., Syres, K.L.: Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 41(11), 4207–4217 (2012)CrossRef
43.
Zurück zum Zitat Godlewski, S., Szymonski, M.: Adsorption and self-assembly of large polycyclic molecules on the surfaces of TiO2 single crystals. Int. J. Mol. Sci. 14(2), 2946–2966 (2013)CrossRef Godlewski, S., Szymonski, M.: Adsorption and self-assembly of large polycyclic molecules on the surfaces of TiO2 single crystals. Int. J. Mol. Sci. 14(2), 2946–2966 (2013)CrossRef
44.
Zurück zum Zitat Pang, C.L., Lindsay, R., Thornton, G.: Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113(6), 3887–3948 (2013)CrossRef Pang, C.L., Lindsay, R., Thornton, G.: Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. Chem. Rev. 113(6), 3887–3948 (2013)CrossRef
45.
Zurück zum Zitat Henderson, M.A.: A surface science perspective on photocatalysis. Surf. Sci. Rep. 66(6–7), 185–297 (2011)CrossRef Henderson, M.A.: A surface science perspective on photocatalysis. Surf. Sci. Rep. 66(6–7), 185–297 (2011)CrossRef
46.
Zurück zum Zitat Zhang, Z., Yates, J.T.: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012)CrossRef Zhang, Z., Yates, J.T.: Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012)CrossRef
47.
Zurück zum Zitat Thompson, T.L., Yates, J.T.: TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top. Catal. 35(3), 197–210 (2005)CrossRef Thompson, T.L., Yates, J.T.: TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top. Catal. 35(3), 197–210 (2005)CrossRef
48.
Zurück zum Zitat Thompson, T.L., Yates, J.T.: Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 106(10), 4428–4453 (2006)CrossRef Thompson, T.L., Yates, J.T.: Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 106(10), 4428–4453 (2006)CrossRef
49.
Zurück zum Zitat Guo, Q., et al.: Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45(13), 3701–3730 (2016)CrossRef Guo, Q., et al.: Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45(13), 3701–3730 (2016)CrossRef
50.
Zurück zum Zitat Cai, Y., Feng, Y.P.: Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Prog. Surf. Sci. 91(4), 183–202 (2016)CrossRef Cai, Y., Feng, Y.P.: Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Prog. Surf. Sci. 91(4), 183–202 (2016)CrossRef
51.
Zurück zum Zitat Ramamoorthy, M., Vanderbilt, D., Kingsmith, R.D.: 1st-Principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 49(23), 16721–16727 (1994)CrossRef Ramamoorthy, M., Vanderbilt, D., Kingsmith, R.D.: 1st-Principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 49(23), 16721–16727 (1994)CrossRef
52.
Zurück zum Zitat Gong, X.-Q., et al.: The 2 × 1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf. Sci. 603(1), 138–144 (2009)CrossRef Gong, X.-Q., et al.: The 2 × 1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf. Sci. 603(1), 138–144 (2009)CrossRef
53.
Zurück zum Zitat Torrelles, X., et al.: Geometric structure of TiO2(011)-(2 × 1). Phys. Rev. Lett. 101(18), 185501 (2008)CrossRef Torrelles, X., et al.: Geometric structure of TiO2(011)-(2 × 1). Phys. Rev. Lett. 101(18), 185501 (2008)CrossRef
54.
Zurück zum Zitat Yurtsever, A., et al.: Imaging the TiO2(011)-(2 × 1) surface using noncontact atomic force microscopy and scanning tunneling microscopy. J. Phys. Chem. C 120(6), 3390–3395 (2016)CrossRef Yurtsever, A., et al.: Imaging the TiO2(011)-(2 × 1) surface using noncontact atomic force microscopy and scanning tunneling microscopy. J. Phys. Chem. C 120(6), 3390–3395 (2016)CrossRef
55.
Zurück zum Zitat Pang, C.L., et al.: (2n × 1) Reconstructions of TiO2(011) revealed by noncontact atomic force microscopy and scanning tunneling microscopy. J. Phys. Chem. C 118(40), 23168–23174 (2014)CrossRef Pang, C.L., et al.: (2n × 1) Reconstructions of TiO2(011) revealed by noncontact atomic force microscopy and scanning tunneling microscopy. J. Phys. Chem. C 118(40), 23168–23174 (2014)CrossRef
56.
Zurück zum Zitat Kubo, T., Orita, H., Nozoye, H.: Surface structures of rutile TiO2(011). J. Am. Chem. Soc. 129(34), 10474–10478 (2007)CrossRef Kubo, T., Orita, H., Nozoye, H.: Surface structures of rutile TiO2(011). J. Am. Chem. Soc. 129(34), 10474–10478 (2007)CrossRef
57.
Zurück zum Zitat Dupont, C., et al.: Structure of TiO2(011) revealed by photoelectron diffraction. Phys. Rev. B 94(24), 241304 (2016)CrossRef Dupont, C., et al.: Structure of TiO2(011) revealed by photoelectron diffraction. Phys. Rev. B 94(24), 241304 (2016)CrossRef
58.
Zurück zum Zitat Woolcot, T., et al.: Scanning tunneling microscopy contrast mechanisms for TiO2. Phys. Rev. Lett. 109(15) (2012) Woolcot, T., et al.: Scanning tunneling microscopy contrast mechanisms for TiO2. Phys. Rev. Lett. 109(15) (2012)
59.
Zurück zum Zitat Wang, Q., et al.: The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study. Phys. Chem. Chem. Phys. 18(29), 19549–19556 (2016)CrossRef Wang, Q., et al.: The unexpectedly rich reconstructions of rutile TiO2(011)-(2 × 1) surface and the driving forces behind their formation: an ab initio evolutionary study. Phys. Chem. Chem. Phys. 18(29), 19549–19556 (2016)CrossRef
60.
Zurück zum Zitat Dulub, O., et al.: Structure, defects, and impurities at the rutile TiO2(011)-(2 × 1) surface: a scanning tunneling microscopy study. Surf. Sci. 600(19), 4407–4417 (2006)CrossRef Dulub, O., et al.: Structure, defects, and impurities at the rutile TiO2(011)-(2 × 1) surface: a scanning tunneling microscopy study. Surf. Sci. 600(19), 4407–4417 (2006)CrossRef
61.
Zurück zum Zitat Kolmer, M., et al.: Temperature-dependent orientation of self-organized nanopatterns on ion-irradiated TiO2(110). Phys. Rev. B 88(19), 195427 (2013)CrossRef Kolmer, M., et al.: Temperature-dependent orientation of self-organized nanopatterns on ion-irradiated TiO2(110). Phys. Rev. B 88(19), 195427 (2013)CrossRef
62.
Zurück zum Zitat Tao, J.G., et al.: Diffusion and reaction of hydrogen on rutile TiO2(011)-2 × 1: the role of surface structure. J. Phys. Chem. C 116(38), 20438–20446 (2012)CrossRef Tao, J.G., et al.: Diffusion and reaction of hydrogen on rutile TiO2(011)-2 × 1: the role of surface structure. J. Phys. Chem. C 116(38), 20438–20446 (2012)CrossRef
63.
Zurück zum Zitat Li, M., et al.: The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J. Phys. Chem. B 104(20), 4944–4950 (2000)CrossRef Li, M., et al.: The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals. J. Phys. Chem. B 104(20), 4944–4950 (2000)CrossRef
64.
Zurück zum Zitat Setvin, M., et al.: Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113(8), 086402 (2014)CrossRef Setvin, M., et al.: Direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113(8), 086402 (2014)CrossRef
65.
Zurück zum Zitat Deskins, N.A., Rousseau, R., Dupuis, M.: Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. The Journal of Physical Chemistry C 114(13), 5891–5897 (2010)CrossRef Deskins, N.A., Rousseau, R., Dupuis, M.: Defining the Role of Excess Electrons in the Surface Chemistry of TiO2. The Journal of Physical Chemistry C 114(13), 5891–5897 (2010)CrossRef
66.
Zurück zum Zitat Kowalski, P.M., et al.: Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105(14), 146405 (2010)CrossRef Kowalski, P.M., et al.: Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105(14), 146405 (2010)CrossRef
67.
Zurück zum Zitat Heckel, W., et al.: The role of hydrogen on the adsorption behavior of carboxylic acid on TiO2 surfaces. J. Phys. Chem. C 118(20), 10771–10779 (2014)CrossRef Heckel, W., et al.: The role of hydrogen on the adsorption behavior of carboxylic acid on TiO2 surfaces. J. Phys. Chem. C 118(20), 10771–10779 (2014)CrossRef
68.
Zurück zum Zitat Yuan, F., et al.: The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces: a first-principles study. Surf. Sci. 628, 126–131 (2014)CrossRef Yuan, F., et al.: The hydroxylated and reduced rutile TiO2(011)-2 × 1 surfaces: a first-principles study. Surf. Sci. 628, 126–131 (2014)CrossRef
69.
Zurück zum Zitat Zhang, D., Yang, M., Dong, S.: Hydroxylation of the rutile TiO2(110) surface enhancing its reducing power for photocatalysis. J. Phys. Chem. C 119(3), 1451–1456 (2014)CrossRef Zhang, D., Yang, M., Dong, S.: Hydroxylation of the rutile TiO2(110) surface enhancing its reducing power for photocatalysis. J. Phys. Chem. C 119(3), 1451–1456 (2014)CrossRef
70.
Zurück zum Zitat Zhang, Z., Yates, J.T.: A new form of chemisorbed photo- and electro-active atomic H species on the TiO2(110) surface. Surf. Sci. 652, 195–199 (2016)CrossRef Zhang, Z., Yates, J.T.: A new form of chemisorbed photo- and electro-active atomic H species on the TiO2(110) surface. Surf. Sci. 652, 195–199 (2016)CrossRef
71.
Zurück zum Zitat Mao, X., et al.: Band-gap states of TiO2(110): major contribution from surface defects. J. Phys. Chem. Lett. 4(22), 3839–3844 (2013)CrossRef Mao, X., et al.: Band-gap states of TiO2(110): major contribution from surface defects. J. Phys. Chem. Lett. 4(22), 3839–3844 (2013)CrossRef
72.
Zurück zum Zitat Yang, W., et al.: Controlled vacancy-assisted C–C couplings of acetaldehyde on rutile TiO2(110). J. Phys. Chem. C 118(48), 27920–27924 (2014)CrossRef Yang, W., et al.: Controlled vacancy-assisted C–C couplings of acetaldehyde on rutile TiO2(110). J. Phys. Chem. C 118(48), 27920–27924 (2014)CrossRef
73.
Zurück zum Zitat Idriss, H., Barteau, M.A.: Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal. Lett. 40(3), 147–153 (1996)CrossRef Idriss, H., Barteau, M.A.: Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal. Lett. 40(3), 147–153 (1996)CrossRef
74.
Zurück zum Zitat Benz, L., et al.: McMurry chemistry on TiO2(110): reductive C=C coupling of benzaldehyde driven by titanium interstitials. J. Am. Chem. Soc. 131(41), 15026–15031 (2009)CrossRef Benz, L., et al.: McMurry chemistry on TiO2(110): reductive C=C coupling of benzaldehyde driven by titanium interstitials. J. Am. Chem. Soc. 131(41), 15026–15031 (2009)CrossRef
75.
Zurück zum Zitat Benz, L., et al.: Molecular imaging of reductive coupling reactions: interstitial-mediated coupling of benzaldehyde on reduced TiO2(110). ACS Nano 5(2), 834–843 (2011)CrossRef Benz, L., et al.: Molecular imaging of reductive coupling reactions: interstitial-mediated coupling of benzaldehyde on reduced TiO2(110). ACS Nano 5(2), 834–843 (2011)CrossRef
76.
Zurück zum Zitat Cremer, T., Jensen, S.C., Friend, C.M.: Enhanced photo-oxidation of formaldehyde on highly reduced o-TiO2(110). J. Phys. Chem. C 118(50), 29242–29251 (2014)CrossRef Cremer, T., Jensen, S.C., Friend, C.M.: Enhanced photo-oxidation of formaldehyde on highly reduced o-TiO2(110). J. Phys. Chem. C 118(50), 29242–29251 (2014)CrossRef
77.
Zurück zum Zitat Koch, M., et al.: Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7(11), 713–717 (2012)CrossRef Koch, M., et al.: Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7(11), 713–717 (2012)CrossRef
78.
Zurück zum Zitat Li, S.-C., et al.: Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 328(5980), 882–884 (2010)CrossRef Li, S.-C., et al.: Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science 328(5980), 882–884 (2010)CrossRef
79.
Zurück zum Zitat Saywell, A., et al.: Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51(21), 5096–5100 (2012)CrossRef Saywell, A., et al.: Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51(21), 5096–5100 (2012)CrossRef
80.
Zurück zum Zitat Kawai, S., et al.: Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc. Natl. Acad. Sci. U S A 111(11), 3968–3972 (2014)CrossRef Kawai, S., et al.: Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc. Natl. Acad. Sci. U S A 111(11), 3968–3972 (2014)CrossRef
81.
Zurück zum Zitat Di Giovannantonio, M., et al.: Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7(9), 8190–8198 (2013)CrossRef Di Giovannantonio, M., et al.: Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7(9), 8190–8198 (2013)CrossRef
82.
Zurück zum Zitat Miccio, L.A., et al.: Interplay between steps and oxygen vacancies on curved TiO2(110). Nano Lett. 16(3), 2017–2022 (2016)CrossRef Miccio, L.A., et al.: Interplay between steps and oxygen vacancies on curved TiO2(110). Nano Lett. 16(3), 2017–2022 (2016)CrossRef
Metadaten
Titel
Aryl–Aryl Covalent Coupling on Rutile TiO2 Surfaces
verfasst von
Marek Kolmer
Jakub S. Prauzner-Bechcicki
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-75810-7_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.