Skip to main content

2021 | OriginalPaper | Buchkapitel

Assessment of Cyclic Plasticity Behaviour of Primary Piping Material of Indian PHWRs Under Multiaxial Loading Scenario

verfasst von : Punit Arora, M. K. Samal, S. K. Gupta, J. Chattopadhyay

Erschienen in: Fatigue, Durability, and Fracture Mechanics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study is aimed at assessment of stabilized cyclic elastic–plastic stress/strain response of low C–Mn steel used as the primary piping material of Indian PHWRs. The material model considers von Mises yield criterion, three decomposed non-linear kinematic hardening-based Chaboche model and associative flow rule. Three-dimensional tubular geometry (as tested) has been analysed using in-house developed finite element code. The Chaboche’s parameters have been calibrated using the stabilized low-cycle fatigue test loop for a given pure axial strain amplitude. These calibrated parameters have been used to predict cyclic plastic material response for pure axial, pure torsion, in-phase axial–torsion and out-of-phase axial–torsion strain paths. The predicted cyclic stress–strain response under pure axial, pure torsion and in-phase axial–torsion conditions is nearly comparable to test response. However, the material stress response is underestimated in axial and shear directions for non-proportional axial–torsion conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASME Boiler & pressure vessel code, section III, Division 1, subsection NB, American Society of Mechanical Engineers (2010) ASME Boiler & pressure vessel code, section III, Division 1, subsection NB, American Society of Mechanical Engineers (2010)
2.
Zurück zum Zitat Ellyin F, Kujawski D (1984) Plastic strain energy in fatigue failure. J Press Vessel Technol Trans ASME 106:342–7CrossRef Ellyin F, Kujawski D (1984) Plastic strain energy in fatigue failure. J Press Vessel Technol Trans ASME 106:342–7CrossRef
3.
Zurück zum Zitat Golos K, Ellyin F (1987) Generalization of cumulative damage criterion to multilevel cyclic loading. Theo Appl Fatigue Mech 7:169–76CrossRef Golos K, Ellyin F (1987) Generalization of cumulative damage criterion to multilevel cyclic loading. Theo Appl Fatigue Mech 7:169–76CrossRef
4.
Zurück zum Zitat Kandil FA, Brown MW, Miller KJ (1982) Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures. Metals Soc, London 280:203–210 Kandil FA, Brown MW, Miller KJ (1982) Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures. Metals Soc, London 280:203–210
5.
Zurück zum Zitat Ninic D (2006) A stress-based multiaxial high cycle fatigue damage criterion. Int J Fatigue Ninic D (2006) A stress-based multiaxial high cycle fatigue damage criterion. Int J Fatigue
6.
Zurück zum Zitat Mc-Diarmid DL (1991) A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract Eng Mater Struct 14(4):429–453CrossRef Mc-Diarmid DL (1991) A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract Eng Mater Struct 14(4):429–453CrossRef
7.
Zurück zum Zitat Matsubara G, Hayashida A, Kano D (2018) Predicting the multiaxial fatigue limit and the multiaxial high-cycle fatigue life based on the unified equivalent shear stress from axial strength characteristics with various waveforms. Int J Fatigue 112:52–62CrossRef Matsubara G, Hayashida A, Kano D (2018) Predicting the multiaxial fatigue limit and the multiaxial high-cycle fatigue life based on the unified equivalent shear stress from axial strength characteristics with various waveforms. Int J Fatigue 112:52–62CrossRef
8.
Zurück zum Zitat Maktouf W, Ammar K, Ben Naceur I, Saï K (2016) Multiaxial high-cycle fatigue criteria and life prediction: application to gas turbine blade. Int J Fatigue 92:25–35 Maktouf W, Ammar K, Ben Naceur I, Saï K (2016) Multiaxial high-cycle fatigue criteria and life prediction: application to gas turbine blade. Int J Fatigue 92:25–35
9.
Zurück zum Zitat Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct
10.
Zurück zum Zitat Glinka G, Wang G, Plumtree A (1995) Mean stress effects in multiaxial fatigue. Fatigue Fract Eng Mater Struct 18:755–764CrossRef Glinka G, Wang G, Plumtree A (1995) Mean stress effects in multiaxial fatigue. Fatigue Fract Eng Mater Struct 18:755–764CrossRef
11.
Zurück zum Zitat Socie DF (1987) Multiaxial fatigue damage models. J Eng Mater Technol 109(4):293–298CrossRef Socie DF (1987) Multiaxial fatigue damage models. J Eng Mater Technol 109(4):293–298CrossRef
12.
Zurück zum Zitat Smith RN, Watson P, Topper TH (1970) A stress strain function for the fatigue of metals. J Mater 5(4):767–778 Smith RN, Watson P, Topper TH (1970) A stress strain function for the fatigue of metals. J Mater 5(4):767–778
13.
Zurück zum Zitat Chu CC (1995) Fatigue damage calculations using the critical plane approach. J Eng Mater Technol 117:41–49 Chu CC (1995) Fatigue damage calculations using the critical plane approach. J Eng Mater Technol 117:41–49
14.
Zurück zum Zitat Gupta SK, Fesich TM, Schuler X, Roos E, A critical plane based model for fatigue assessment under fixed and rotating principal direction loading. In: Structural mechanics in reactor technology conference, SMiRT-21, New Delhi, India, Volume: Div-II, Paper ID: 624 Gupta SK, Fesich TM, Schuler X, Roos E, A critical plane based model for fatigue assessment under fixed and rotating principal direction loading. In: Structural mechanics in reactor technology conference, SMiRT-21, New Delhi, India, Volume: Div-II, Paper ID: 624
15.
Zurück zum Zitat Ince A, Glinka G (2014) A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int J Fatigue 62:34–41CrossRef Ince A, Glinka G (2014) A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int J Fatigue 62:34–41CrossRef
16.
Zurück zum Zitat Zhu S-P, Yu Z-Y, Liu Q, Ince A (2018) Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction. Int J Damage Mech 1–32 Zhu S-P, Yu Z-Y, Liu Q, Ince A (2018) Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction. Int J Damage Mech 1–32
17.
Zurück zum Zitat Arora P, Gupta SK, Samal MK, Chattopadhyay J (2019) Development of new critical plane model for assessment of fatigue life under multi-axial loading conditions. Int J Fatigue 129, Article 105209 Arora P, Gupta SK, Samal MK, Chattopadhyay J (2019) Development of new critical plane model for assessment of fatigue life under multi-axial loading conditions. Int J Fatigue 129, Article 105209
18.
Zurück zum Zitat Xiaoshan L, Guoqui H, Xiangqun D, Defeng M, Weihua Z (2009) Fatigue behavior and dislocation substructures for 6063 aluminum alloy under nonproportional loadings. Int J Fatigue 31:1190–1195CrossRef Xiaoshan L, Guoqui H, Xiangqun D, Defeng M, Weihua Z (2009) Fatigue behavior and dislocation substructures for 6063 aluminum alloy under nonproportional loadings. Int J Fatigue 31:1190–1195CrossRef
19.
Zurück zum Zitat Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect, G.E.G.B. report RD/B/N 731, Berceley Nuclear Laboratory Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect, G.E.G.B. report RD/B/N 731, Berceley Nuclear Laboratory
20.
Zurück zum Zitat Chaboche JL, Dang-Van K, Cordier G (1979) Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the international conference on SMiRT-5 (1979), pp 1–10 Chaboche JL, Dang-Van K, Cordier G (1979) Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the international conference on SMiRT-5 (1979), pp 1–10
21.
Zurück zum Zitat Ohno N, Wang JD (1993) Kinematic hardening rules with critical state of dynamic recovery, part I: formulations and basic features for ratcheting behaviour. Part II: application to experiments of ratcheting behaviour. Int J Plast 9:375–403CrossRef Ohno N, Wang JD (1993) Kinematic hardening rules with critical state of dynamic recovery, part I: formulations and basic features for ratcheting behaviour. Part II: application to experiments of ratcheting behaviour. Int J Plast 9:375–403CrossRef
22.
Zurück zum Zitat Ohno N, Wang JD (1994) Kinematic hardening rules for simulation of ratcheting behaviour. Eur J Mech, A/Solids 13:519–531MATH Ohno N, Wang JD (1994) Kinematic hardening rules for simulation of ratcheting behaviour. Eur J Mech, A/Solids 13:519–531MATH
23.
Zurück zum Zitat Tanaka E (1994) A non-proportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependencies and memory effects of isotropic hardening. Eur J Mech A Solid 13(2):155–173MATH Tanaka E (1994) A non-proportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependencies and memory effects of isotropic hardening. Eur J Mech A Solid 13(2):155–173MATH
24.
Zurück zum Zitat Benallal A, Marquis D (1987) Constitutive equations for non-proportional cyclic elasto-viscoplasticity. J Eng Mater Technol, Trans ASME 109(4):326–336CrossRef Benallal A, Marquis D (1987) Constitutive equations for non-proportional cyclic elasto-viscoplasticity. J Eng Mater Technol, Trans ASME 109(4):326–336CrossRef
25.
Zurück zum Zitat Mroz Z (1967) On the description of anisotropic work hardening. J Mech Phys Solids 15:163–175CrossRef Mroz Z (1967) On the description of anisotropic work hardening. J Mech Phys Solids 15:163–175CrossRef
26.
Zurück zum Zitat Xing R, Yu D, Shi S, Chen X (2019) Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path. Int J Plasticity 120:127–146 Xing R, Yu D, Shi S, Chen X (2019) Cyclic deformation of 316L stainless steel and constitutive modeling under non-proportional variable loading path. Int J Plasticity 120:127–146
27.
Zurück zum Zitat Facheris G, Janssens KGF (2014) An internal variable dependent constitutive cyclic plastic material description including ratcheting calibrated for AISI 316L. Comput Mater Sci 87:160–171CrossRef Facheris G, Janssens KGF (2014) An internal variable dependent constitutive cyclic plastic material description including ratcheting calibrated for AISI 316L. Comput Mater Sci 87:160–171CrossRef
28.
Zurück zum Zitat Wu H (2018) An empirical non-proportional cyclic plasticity approach under multiaxial low cycle fatigue loading. Int J Mech Sci 142–143:66–73CrossRef Wu H (2018) An empirical non-proportional cyclic plasticity approach under multiaxial low cycle fatigue loading. Int J Mech Sci 142–143:66–73CrossRef
29.
Zurück zum Zitat Arora P, Gupta SK, Bhasin V, Singh RK, Sivaprasad S, Tarafder S (2016) Testing and assessment of fatigue life prediction models for Indian PHWRs piping material under multi-axial load cycling. Int J Fatigue 85:98–113 Arora P, Gupta SK, Bhasin V, Singh RK, Sivaprasad S, Tarafder S (2016) Testing and assessment of fatigue life prediction models for Indian PHWRs piping material under multi-axial load cycling. Int J Fatigue 85:98–113
30.
Zurück zum Zitat Standard Practice for Strain-Controlled Fatigue Testing, (Designation: E 606—04), American Society of Testing Materials (ASTM) Standard Practice for Strain-Controlled Fatigue Testing, (Designation: E 606—04), American Society of Testing Materials (ASTM)
31.
Zurück zum Zitat Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin Walled Tubular Specimens (Designation: E2207—08), American Society of Testing Materials (ASTM) Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin Walled Tubular Specimens (Designation: E2207—08), American Society of Testing Materials (ASTM)
32.
Zurück zum Zitat Prager W (1956) A new method of analysing stresses and strains work-hardening plastic solids. J Appl Mech 23:493–496MathSciNetMATH Prager W (1956) A new method of analysing stresses and strains work-hardening plastic solids. J Appl Mech 23:493–496MathSciNetMATH
33.
Zurück zum Zitat Nguyen TT, Liu GR, Dai KY, Lam KY (2007) Selective smoothed finite element method. Tsinghua Sci Technol 12(5):497–508. ISSN: 1007-0214-01/19 Nguyen TT, Liu GR, Dai KY, Lam KY (2007) Selective smoothed finite element method. Tsinghua Sci Technol 12(5):497–508. ISSN: 1007-0214-01/19
34.
Zurück zum Zitat Wu HC, Yeh WC, On the experimental determination of yield surfaces and some results of annealed 304 stainless steel. Int J Plasticity 7:803 Wu HC, Yeh WC, On the experimental determination of yield surfaces and some results of annealed 304 stainless steel. Int J Plasticity 7:803
35.
Zurück zum Zitat Wu HC, Lu JK, Pan WF (1995) Some observations on yield surfaces for 304 stainless steel at large strain. J Appl Mech 62:626CrossRef Wu HC, Lu JK, Pan WF (1995) Some observations on yield surfaces for 304 stainless steel at large strain. J Appl Mech 62:626CrossRef
Metadaten
Titel
Assessment of Cyclic Plasticity Behaviour of Primary Piping Material of Indian PHWRs Under Multiaxial Loading Scenario
verfasst von
Punit Arora
M. K. Samal
S. K. Gupta
J. Chattopadhyay
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4779-9_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.