Skip to main content

2016 | OriginalPaper | Buchkapitel

Assessment of Inverse and Direct Methods for Airfoil and Wing Design

verfasst von : Mengmeng Zhang, Arthur William Rizzi

Erschienen in: Simulation-Driven Modeling and Optimization

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of aerodynamic design for airfoils and wings is to improve the performance of the lifting surfaces, e.g., by minimizing the drag. We consider here two approaches, the classical inverse design approach that finds the surface which produces desired pressure distributions, and the direct mathematical optimization based on local parameter searches, that is usually enabled by fast gradient computation, for example, by the adjoint method. The hybrid approach is to combine both of them. Each approach has its own pros and cons. In this chapter the approaches are assessed by application to the design of transonic RAE2822 airfoil and ONERA M6 wing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This section is adapted from [5, 18].
 
4
1 drag count is defined as 104 drag coefficient; 1 lift count is defined as 103 lift coefficient.
 
Literatur
1.
Zurück zum Zitat Sobieszczanski-Sobieski, J.: Multidisciplinary Design Optimization: An Emerging New Engineering Discipline. Kluwer Academic, Boston (1995) Sobieszczanski-Sobieski, J.: Multidisciplinary Design Optimization: An Emerging New Engineering Discipline. Kluwer Academic, Boston (1995)
2.
Zurück zum Zitat Kroo, I.M.: Multidisciplinary Design Optimization: State-of-the-Art, chapter MDO for Large-Scale Design, pp. 22–44. SIAM, Philadelphia (1997) Kroo, I.M.: Multidisciplinary Design Optimization: State-of-the-Art, chapter MDO for Large-Scale Design, pp. 22–44. SIAM, Philadelphia (1997)
3.
Zurück zum Zitat Vassberg, J.C., Jameson, A.: Influence of shape parametrization on aerodynamic shape optimization. Technical report, Brussels, Belgium (2014) Von Karman Institute Lecture-III Vassberg, J.C., Jameson, A.: Influence of shape parametrization on aerodynamic shape optimization. Technical report, Brussels, Belgium (2014) Von Karman Institute Lecture-III
4.
Zurück zum Zitat Castonguay, P., Nadarjah, S.K.: Effect of shape parameterization on aerodynamic shape optimization. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007-59, Reno, Nevada (2007) Castonguay, P., Nadarjah, S.K.: Effect of shape parameterization on aerodynamic shape optimization. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007-59, Reno, Nevada (2007)
5.
Zurück zum Zitat Zhang, M.: Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design. Doctoral thesis, Department. Aeronautics, KTH Kungl. Tekniska Högskolan (2015) Zhang, M.: Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design. Doctoral thesis, Department. Aeronautics, KTH Kungl. Tekniska Högskolan (2015)
6.
Zurück zum Zitat Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial Applied Mathematics, Philadelphia (2009)CrossRefMATH Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial Applied Mathematics, Philadelphia (2009)CrossRefMATH
7.
Zurück zum Zitat Campbell, R.L., Smith, L.A.: A hybrid algorithm for transonic airfoil and wing design. In: AIAA Aerospace Sciences Meeting, 87-2552 (1987) Campbell, R.L., Smith, L.A.: A hybrid algorithm for transonic airfoil and wing design. In: AIAA Aerospace Sciences Meeting, 87-2552 (1987)
8.
Zurück zum Zitat Lamar, J.E.: A vortex-lattice method for the mean camber shapes of trimmed non-coplanar planforms with minimum vortex drag. Technical report, Washington, DC (1976). NASA TN D-8090 Lamar, J.E.: A vortex-lattice method for the mean camber shapes of trimmed non-coplanar planforms with minimum vortex drag. Technical report, Washington, DC (1976). NASA TN D-8090
9.
Zurück zum Zitat Barger, R.L., Jr. Brooks, C.W.: A streamline curvature method for design of supercritical and subcritical airfoils. Technical report (1974) NASA TN D-7770 Barger, R.L., Jr. Brooks, C.W.: A streamline curvature method for design of supercritical and subcritical airfoils. Technical report (1974) NASA TN D-7770
10.
Zurück zum Zitat Drela, M.: A user’s guide to lindop v2.50. Technical report (1996) Drela, M.: A user’s guide to lindop v2.50. Technical report (1996)
11.
Zurück zum Zitat Drela, M.: Lindop optimization procedures. Technical report, Computational Aerospace Sciences Laboratory, MIT Department of Aeronautics and Astronautics (1993). Technical Report Drela, M.: Lindop optimization procedures. Technical report, Computational Aerospace Sciences Laboratory, MIT Department of Aeronautics and Astronautics (1993). Technical Report
12.
Zurück zum Zitat Drela, M.: Newton solution of coupled viscous/inviscid multielement airfoil flows. In: AIAA Aerospace Sciences Meeting, 90-1470 (1990) Drela, M.: Newton solution of coupled viscous/inviscid multielement airfoil flows. In: AIAA Aerospace Sciences Meeting, 90-1470 (1990)
13.
Zurück zum Zitat Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3, 233–260 (1998)CrossRef Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3, 233–260 (1998)CrossRef
14.
Zurück zum Zitat Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)CrossRefMATH Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)CrossRefMATH
15.
Zurück zum Zitat Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W.R., Alonso, J.: Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2013-0287, Grapevine, 7–10 Jan (2013) Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W.R., Alonso, J.: Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2013-0287, Grapevine, 7–10 Jan (2013)
16.
Zurück zum Zitat Nadarajah, S.K., Jameson, A.: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In: 38th Aerospace Sciences Meeting, AIAA 2000-0667 (2000) Nadarajah, S.K., Jameson, A.: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In: 38th Aerospace Sciences Meeting, AIAA 2000-0667 (2000)
17.
Zurück zum Zitat Palacios, F., Economon, T.D., Wendorff, A.D., Alonso, J.: Large-scale aircraft design using SU2. In: 53st AIAA Aerospace Sciences Meeting, AIAA 2015-1946, Kissimmee, Florida, 5–9 Jan (2015) Palacios, F., Economon, T.D., Wendorff, A.D., Alonso, J.: Large-scale aircraft design using SU2. In: 53st AIAA Aerospace Sciences Meeting, AIAA 2015-1946, Kissimmee, Florida, 5–9 Jan (2015)
18.
Zurück zum Zitat Zhang, M., Rizzi, A., Nangia, R.: Transonic airfoil and wing design using inverse and direct methods. In: AIAA SciTech, AIAA 2015-1934, Kissimmee, Florida, 5–9 Jan (2015) Zhang, M., Rizzi, A., Nangia, R.: Transonic airfoil and wing design using inverse and direct methods. In: AIAA SciTech, AIAA 2015-1934, Kissimmee, Florida, 5–9 Jan (2015)
19.
Zurück zum Zitat Dulikravich, G.S., Baker, D.P.: Aerodynamic shape inverse design using a Fourier series method. In: AIAA Aerospace Sciences Meeting, AIAA 90-0185 (1990) Dulikravich, G.S., Baker, D.P.: Aerodynamic shape inverse design using a Fourier series method. In: AIAA Aerospace Sciences Meeting, AIAA 90-0185 (1990)
20.
Zurück zum Zitat Campbell, R.L.: An approach to constrained aerodynamic design with application to airfoils. Technical report Campbell, R.L.: An approach to constrained aerodynamic design with application to airfoils. Technical report
21.
Zurück zum Zitat Obayashi, S.: Genetic optimization of target pressure distributions for inverse design methods. In: AIAA Aerospace Sciences Meeting, AIAA-95-1649-CP (1995) Obayashi, S.: Genetic optimization of target pressure distributions for inverse design methods. In: AIAA Aerospace Sciences Meeting, AIAA-95-1649-CP (1995)
22.
Zurück zum Zitat Streit, T., Wichmann, G., Von Knoblauch Zu Hatzbach, F., Campbell, R.: Implications of conical flow for laminar wing design and analysis. In: 29th AIAA Applied Aerodynamics Conference, AIAA 2011-3808 (2011) Streit, T., Wichmann, G., Von Knoblauch Zu Hatzbach, F., Campbell, R.: Implications of conical flow for laminar wing design and analysis. In: 29th AIAA Applied Aerodynamics Conference, AIAA 2011-3808 (2011)
23.
Zurück zum Zitat Zhang, M., Wang, C., Rizzi, A., Nangia, R.: Hybrid feedback design for subsonic and transonic airfoils and wings. In: AIAA SciTech, AIAA 2014-0414, National Harbor, Maryland, 13–17 Jan (2014) Zhang, M., Wang, C., Rizzi, A., Nangia, R.: Hybrid feedback design for subsonic and transonic airfoils and wings. In: AIAA SciTech, AIAA 2014-0414, National Harbor, Maryland, 13–17 Jan (2014)
24.
Zurück zum Zitat Takanashi, S.: An iterative procedure for three-dimensional transonic wing design by the integral equation method. In: AIAA 2nd Applied Aerodynamic Conference, AIAA-84-2155, Seattle, Washington, 21–23 August 1984 Takanashi, S.: An iterative procedure for three-dimensional transonic wing design by the integral equation method. In: AIAA 2nd Applied Aerodynamic Conference, AIAA-84-2155, Seattle, Washington, 21–23 August 1984
25.
Zurück zum Zitat Mark Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987)CrossRefMATH Mark Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987)CrossRefMATH
26.
Zurück zum Zitat Drela, M.: Design and optimization method for multi-element airfoils. In: AIAA Aerospace Sciences Meeting, 93-0969 (1993) Drela, M.: Design and optimization method for multi-element airfoils. In: AIAA Aerospace Sciences Meeting, 93-0969 (1993)
27.
Zurück zum Zitat Amoignon, O., Navratil, J., Hradil, J.: Study of parametrization in the project CEDESA. In: AIAA SciTech, 2014-0570, National Harbor, Maryland, (2014) Amoignon, O., Navratil, J., Hradil, J.: Study of parametrization in the project CEDESA. In: AIAA SciTech, 2014-0570, National Harbor, Maryland, (2014)
28.
Zurück zum Zitat Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Comput. Fluids 36(6), 1119–1136 (2007)CrossRefMATH Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Comput. Fluids 36(6), 1119–1136 (2007)CrossRefMATH
29.
Zurück zum Zitat Mohammadi, B., Molho, J.I., Santiago, J.G.: Design of minimal dispersion fluidic channels in a CAD-free framework. In: Center for Turbulence Research, Proceedings of the Summer Program 2000 Mohammadi, B., Molho, J.I., Santiago, J.G.: Design of minimal dispersion fluidic channels in a CAD-free framework. In: Center for Turbulence Research, Proceedings of the Summer Program 2000
30.
Zurück zum Zitat Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A.: A CAD-free approach to high-fidelity aerostructural optimization. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA 2010–9231, Fort Worth, Texas, 13–15 Sept (2010) Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A.: A CAD-free approach to high-fidelity aerostructural optimization. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA 2010–9231, Fort Worth, Texas, 13–15 Sept (2010)
31.
Zurück zum Zitat Tomac, M., Eller, D.: From geometry to CFD grids. an automated approach for conceptual design. Prog. Aerosp. Sci. 47(11), 589–596 (2011). doi: 10.1016/j.paerosci.2011.08.005 Tomac, M., Eller, D.: From geometry to CFD grids. an automated approach for conceptual design. Prog. Aerosp. Sci. 47(11), 589–596 (2011). doi: 10.1016/j.paerosci.2011.08.005
32.
Zurück zum Zitat Gallier, J.: Curves and surfaces in geometric modeling: Theory and algorithms. Technical report, Department of Computer and Information Science, University of Pennsylvania (2013) Gallier, J.: Curves and surfaces in geometric modeling: Theory and algorithms. Technical report, Department of Computer and Information Science, University of Pennsylvania (2013)
33.
Zurück zum Zitat Farin, G.E., Hoschek, J., Kim, M.-S.: Handbook of Computer Aided Geometric Design. Elsevier, New York (2002)MATH Farin, G.E., Hoschek, J., Kim, M.-S.: Handbook of Computer Aided Geometric Design. Elsevier, New York (2002)MATH
35.
Zurück zum Zitat Melin, T., Amadori, K., Krus, P.: Parametric wing profile description for conceptual design. In: CEAS Meeting, Venice, Italy (2011) Melin, T., Amadori, K., Krus, P.: Parametric wing profile description for conceptual design. In: CEAS Meeting, Venice, Italy (2011)
36.
Zurück zum Zitat Dwight, R.P.: Robust mesh deformation using the linear elasticity equations. In: Proceedings of the Fourth International Conference on Computational Fluid Dynamics, ICCFD, Ghent, 10–14 July 2006 Dwight, R.P.: Robust mesh deformation using the linear elasticity equations. In: Proceedings of the Fourth International Conference on Computational Fluid Dynamics, ICCFD, Ghent, 10–14 July 2006
37.
Zurück zum Zitat Hicks, R., Henne, P.A.: Wing design by numerical optimization. In: AIAA, AIAA 77-1247, Seattle, Washington, 22–24 Aug (1977) Hicks, R., Henne, P.A.: Wing design by numerical optimization. In: AIAA, AIAA 77-1247, Seattle, Washington, 22–24 Aug (1977)
38.
Zurück zum Zitat Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Trans. Math. Softw. 20(4), 151–160 (1986) Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Trans. Math. Softw. 20(4), 151–160 (1986)
39.
Zurück zum Zitat Les, P., Wayne, T.: The NURBS Book, 2nd edn. Springer, New York (1997) Les, P., Wayne, T.: The NURBS Book, 2nd edn. Springer, New York (1997)
40.
Zurück zum Zitat Schmitt, V., Charpin, F.: Pressure distributions on the ONERA-M6_Wing at transonic Mach numbers, AGARD AR138 (1979) Schmitt, V., Charpin, F.: Pressure distributions on the ONERA-M6_Wing at transonic Mach numbers, AGARD AR138 (1979)
41.
Zurück zum Zitat Piquet, J.: Turbulent Flows: Models and Physics. Springer, New York (2001) Piquet, J.: Turbulent Flows: Models and Physics. Springer, New York (2001)
42.
Zurück zum Zitat Lyu, Z., Kenway, G.K.W., Martins, J.R.R.A.: RANS-based aerodynamic shape optimization investigation of the common research model wing. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0567, National Harbor, Maryland, 13–17 Jan 2014. doi: 10.2514/6.2014-0567 Lyu, Z., Kenway, G.K.W., Martins, J.R.R.A.: RANS-based aerodynamic shape optimization investigation of the common research model wing. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0567, National Harbor, Maryland, 13–17 Jan 2014. doi: 10.2514/6.2014-0567
43.
Zurück zum Zitat Jameson, A.: Aerodynamic shape optimization using the adjoint method. Technical report, Brussels, Belgium (2003) Von Karman Institute Lecture-III Jameson, A.: Aerodynamic shape optimization using the adjoint method. Technical report, Brussels, Belgium (2003) Von Karman Institute Lecture-III
44.
Zurück zum Zitat Anderson, J.D.: Computational Fluid Dynamics: The Basic with Applications, International edition, McGraw-Hill, New York (1995) Anderson, J.D.: Computational Fluid Dynamics: The Basic with Applications, International edition, McGraw-Hill, New York (1995)
45.
Zurück zum Zitat Van der Velden, A.: The global aircraft shape. In: AGARD-FDP-VKI Special Course at VKI, pp. 9–1–9–11, Rhode-Saint-Genese, April (1994) Van der Velden, A.: The global aircraft shape. In: AGARD-FDP-VKI Special Course at VKI, pp. 9–1–9–11, Rhode-Saint-Genese, April (1994)
Metadaten
Titel
Assessment of Inverse and Direct Methods for Airfoil and Wing Design
verfasst von
Mengmeng Zhang
Arthur William Rizzi
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-27517-8_4

Premium Partner