Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Atomic Layer Deposition for Metal Oxide Nanomaterials

verfasst von : Xiaohua Du

Erschienen in: Metal Oxide Nanomaterials for Chemical Sensors

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid state gas sensors based on semiconducting metal oxides have been widely investigated and utilized in environmental monitoring, chemical process controls and personal safety. In recent years, one dimensional nanostructures, such as nanowires, nanorods, nanotubes and nanobelts, have attracted much attention due to their great potential application in gas sensing, and for overcoming fundamental limitations due to their ultra high surface-to-volume ratio. A variety of methods have been developed to fabricate these nanostructures. The nanostructure based gas sensors demonstrated excellent response and recovery characteristics. However, the developed methods are not convenient for mass production and improvements on sensitivity, selectivity and long term stability are still needed. Atomic layer deposition (ALD) is a film deposition technique based on the sequential use of self-terminating surface reactions. Due to the unique nature of the reaction process, ALD becomes an ideal deposition technique to form atomic thin films and nanolaminate structures. ALD is finding ever more applications for emerging nanodevices. The potential to control thickness at the sub-nm level, and the ability to deposit thin films over highly corrugated substrates with high aspect ratio topography makes ALD of great interest in fabrication of one dimensional nanomaterial. Utilizing fabrication through nanotechnology, ALD has found new opportunities in gas sensors based on metal oxide semiconductors. In this chapter, the general characteristics of atomic layer deposition, the sensing performance enhancements by quasi-1 dimensional nanostructures and nanomaterials, the method to fabricate such nanostructures and the recent exploration of ALD in gas sensing studies are reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sayago I, Gutierrez J, Ares L, Robla JI, Horrillo MC, Getino J, Agapito JA (1995) Long—term reliability of gas sensors for detection of nitrogen oxides. Sens Actuators B 26(1–3):56–58CrossRef Sayago I, Gutierrez J, Ares L, Robla JI, Horrillo MC, Getino J, Agapito JA (1995) Long—term reliability of gas sensors for detection of nitrogen oxides. Sens Actuators B 26(1–3):56–58CrossRef
2.
Zurück zum Zitat Meixner H, Lampe U (1996) Metal oxide sensors. Sens Actuators B 33(1):198–202CrossRef Meixner H, Lampe U (1996) Metal oxide sensors. Sens Actuators B 33(1):198–202CrossRef
3.
Zurück zum Zitat Martinelli G, Carotta MC (1995) Thick-film gas sensors. Sens Actuators B 23:157–161CrossRef Martinelli G, Carotta MC (1995) Thick-film gas sensors. Sens Actuators B 23:157–161CrossRef
4.
Zurück zum Zitat Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35CrossRef Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35CrossRef
5.
Zurück zum Zitat Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839CrossRef Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839CrossRef
6.
Zurück zum Zitat Watsont J, Ihokura K, Colest GSV (1993) The tin dioxide gas sensor. Measur Sci Technol 4:711–719CrossRef Watsont J, Ihokura K, Colest GSV (1993) The tin dioxide gas sensor. Measur Sci Technol 4:711–719CrossRef
7.
Zurück zum Zitat Safonova O, Bezverkhy I, Fabrichnyi P, Rumyantseva M, Gaskov A (2002) Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements. J Mater Chem 12:1174–1178CrossRef Safonova O, Bezverkhy I, Fabrichnyi P, Rumyantseva M, Gaskov A (2002) Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements. J Mater Chem 12:1174–1178CrossRef
8.
Zurück zum Zitat Sahm T, Gurlo A, Bârsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators B 118(1–2):78–83CrossRef Sahm T, Gurlo A, Bârsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators B 118(1–2):78–83CrossRef
9.
Zurück zum Zitat Chwieroth B, Patton BR, Wang Y (2001) Conduction and gas- surface reaction modeling in metal oxide gas sensors. J Electroceram 6(1):27–41CrossRef Chwieroth B, Patton BR, Wang Y (2001) Conduction and gas- surface reaction modeling in metal oxide gas sensors. J Electroceram 6(1):27–41CrossRef
10.
Zurück zum Zitat Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167CrossRef Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167CrossRef
11.
Zurück zum Zitat Gulati S, Mehan N, Goyal DP, Mansingh A (2002) Electrical equivalent model for SnO2 bulk sensors. Sens Actuators B 87:309–320CrossRef Gulati S, Mehan N, Goyal DP, Mansingh A (2002) Electrical equivalent model for SnO2 bulk sensors. Sens Actuators B 87:309–320CrossRef
12.
Zurück zum Zitat Mizsei J (1995) How can sensitive and selective semiconductor gas sensors be made? Sens Actuators B 23(2–3):173–176CrossRef Mizsei J (1995) How can sensitive and selective semiconductor gas sensors be made? Sens Actuators B 23(2–3):173–176CrossRef
13.
Zurück zum Zitat Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4455CrossRef Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4455CrossRef
14.
Zurück zum Zitat Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155CrossRef Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155CrossRef
15.
Zurück zum Zitat Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19CrossRef Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19CrossRef
16.
Zurück zum Zitat Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide semiconductor in chemiresistors: does the nanoscale matter? Small 2(1):36–50CrossRef Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide semiconductor in chemiresistors: does the nanoscale matter? Small 2(1):36–50CrossRef
17.
Zurück zum Zitat Jin ZH, Zhou HJ, Jin ZL, Savinell RF, Liu CC (1998) Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens Actuators B 52:188–194CrossRef Jin ZH, Zhou HJ, Jin ZL, Savinell RF, Liu CC (1998) Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens Actuators B 52:188–194CrossRef
18.
Zurück zum Zitat Yoo DJ, Tamaki J, Park SJ, Miura N, Yamazoe N (1995) Effects of thickness and calcination temperature on tin dioxide sol-derived thin film sensor. J Electrochem Soc 142:L105–L107CrossRef Yoo DJ, Tamaki J, Park SJ, Miura N, Yamazoe N (1995) Effects of thickness and calcination temperature on tin dioxide sol-derived thin film sensor. J Electrochem Soc 142:L105–L107CrossRef
19.
Zurück zum Zitat Bruno L, Pijolat C, Lalauze R (1994) Tin dioxide thin film gas sensor prepared by chemical vapor deposition—influence of grain size and thickness on the electrical properties. Sens Actuators B 18:195–199CrossRef Bruno L, Pijolat C, Lalauze R (1994) Tin dioxide thin film gas sensor prepared by chemical vapor deposition—influence of grain size and thickness on the electrical properties. Sens Actuators B 18:195–199CrossRef
20.
Zurück zum Zitat Kim KH, Park CG (1991) Electrical properties and gas sensing behavior of SnO2 films prepared by chemical vapor deposition. J Electrochem Soc 138:2408–2412CrossRef Kim KH, Park CG (1991) Electrical properties and gas sensing behavior of SnO2 films prepared by chemical vapor deposition. J Electrochem Soc 138:2408–2412CrossRef
21.
Zurück zum Zitat Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res 34:151–180CrossRef Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res 34:151–180CrossRef
22.
Zurück zum Zitat Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000CrossRef Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000CrossRef
23.
Zurück zum Zitat Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656CrossRef Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656CrossRef
24.
Zurück zum Zitat Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871CrossRef Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871CrossRef
25.
Zurück zum Zitat Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804CrossRef Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804CrossRef
26.
Zurück zum Zitat Kong J, Franklin NR, Zhou CW, Chapline MJ, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRef Kong J, Franklin NR, Zhou CW, Chapline MJ, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRef
27.
Zurück zum Zitat Chen YJ, Zhu CL, Wang TH (2006) The enhanced ethanol sensing properties of multiwalled carbon nanotubes/SnO2 Core/shell nanostructures. Nanotechnology 17:3012–3017CrossRef Chen YJ, Zhu CL, Wang TH (2006) The enhanced ethanol sensing properties of multiwalled carbon nanotubes/SnO2 Core/shell nanostructures. Nanotechnology 17:3012–3017CrossRef
28.
Zurück zum Zitat Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34(19):R125–R149CrossRef Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34(19):R125–R149CrossRef
29.
Zurück zum Zitat Huang H, Lee YC, Tan OK, Zhou W, Peng N, Zhang Q (2009) High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 20:115501 (5pp)CrossRef Huang H, Lee YC, Tan OK, Zhou W, Peng N, Zhang Q (2009) High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 20:115501 (5pp)CrossRef
30.
Zurück zum Zitat Francioso L, Taurino AM, Forleo A, Siciliano P (2008) TiO2 nanowires array fabrication and gas sensing properties. Sens Actuators B 130(1):70–76CrossRef Francioso L, Taurino AM, Forleo A, Siciliano P (2008) TiO2 nanowires array fabrication and gas sensing properties. Sens Actuators B 130(1):70–76CrossRef
31.
Zurück zum Zitat Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species. Science 293:1289–1292CrossRef Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species. Science 293:1289–1292CrossRef
32.
Zurück zum Zitat McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly order nanowire array on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384CrossRef McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly order nanowire array on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384CrossRef
33.
Zurück zum Zitat Eliol OH, Morisette D, Akin D, Denton JP, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(11):4613–4615CrossRef Eliol OH, Morisette D, Akin D, Denton JP, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(11):4613–4615CrossRef
34.
Zurück zum Zitat Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Letter 4(4):665–670CrossRef Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Letter 4(4):665–670CrossRef
35.
Zurück zum Zitat Adeghian RB, Kahrizi M (2007) A novel miniature gas ionization sensor based on freestanding gold nanowires. Sens Actuators A 137(2):248–255CrossRef Adeghian RB, Kahrizi M (2007) A novel miniature gas ionization sensor based on freestanding gold nanowires. Sens Actuators A 137(2):248–255CrossRef
36.
Zurück zum Zitat Liu Z, Searson PC (2006) Single nanoporous gold nanowire sensors. J Phys Chem B 110(9):4318–4322CrossRef Liu Z, Searson PC (2006) Single nanoporous gold nanowire sensors. J Phys Chem B 110(9):4318–4322CrossRef
37.
Zurück zum Zitat Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Penner RM, Yun M (2006) Investigation of a single Pd nanowire for use as a hydrogen sensor. Small 2(3):356–358CrossRef Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Penner RM, Yun M (2006) Investigation of a single Pd nanowire for use as a hydrogen sensor. Small 2(3):356–358CrossRef
38.
Zurück zum Zitat Walter EC, Favier F, Penner RM (2002) Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem 74:1546–1553CrossRef Walter EC, Favier F, Penner RM (2002) Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem 74:1546–1553CrossRef
39.
Zurück zum Zitat Atashbar MZ, Singamaneni S (2005) Room temperature gas sensor based on metallic nanowires. Sens Actuators B 111–112(11):13–21CrossRef Atashbar MZ, Singamaneni S (2005) Room temperature gas sensor based on metallic nanowires. Sens Actuators B 111–112(11):13–21CrossRef
40.
Zurück zum Zitat Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231CrossRef Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231CrossRef
41.
Zurück zum Zitat Dan YP, Cao YY, Mallouk TE, Johnson AT, Evoy S (2007) Dielectrophoretically assembled polymer nanowires for gas sensing. Sens Actuators B 125(1):55–59CrossRef Dan YP, Cao YY, Mallouk TE, Johnson AT, Evoy S (2007) Dielectrophoretically assembled polymer nanowires for gas sensing. Sens Actuators B 125(1):55–59CrossRef
42.
Zurück zum Zitat Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315CrossRef Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315CrossRef
43.
Zurück zum Zitat George SM, Ott AW, Klaus JW (1996) Surface chemistry for atomic layer growth. J Phys Chem 100(31):13121–13131CrossRef George SM, Ott AW, Klaus JW (1996) Surface chemistry for atomic layer growth. J Phys Chem 100(31):13121–13131CrossRef
44.
Zurück zum Zitat Goodman CHL, Pessa MV (1986) Atomic layer epitaxy. J Appl Phys 60(3):R65–R81CrossRef Goodman CHL, Pessa MV (1986) Atomic layer epitaxy. J Appl Phys 60(3):R65–R81CrossRef
45.
Zurück zum Zitat Suntola T (1992) Atomic layer epitaxy. Thin Solid Films 216(1):84–89CrossRef Suntola T (1992) Atomic layer epitaxy. Thin Solid Films 216(1):84–89CrossRef
46.
Zurück zum Zitat Suntola T (1994) Atomic Layer Epitaxy. In Hurle DTJ (ed) Handbook of Crystal Growth, Part B: Growth Mechanisms and Dynamics, Vol. 3. Elsevier, Amsterdam (Chapter 14) Suntola T (1994) Atomic Layer Epitaxy. In Hurle DTJ (ed) Handbook of Crystal Growth, Part B: Growth Mechanisms and Dynamics, Vol. 3. Elsevier, Amsterdam (Chapter 14)
47.
Zurück zum Zitat Leskela M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146CrossRef Leskela M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146CrossRef
48.
Zurück zum Zitat Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(1–52):121301CrossRef Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(1–52):121301CrossRef
49.
Zurück zum Zitat Ritala M, Leskela M (2001) Atomic layer deposition. In: Handbook of thin film materials, Vol 1, Elsevier, San Diego (Chapter 2) Ritala M, Leskela M (2001) Atomic layer deposition. In: Handbook of thin film materials, Vol 1, Elsevier, San Diego (Chapter 2)
50.
Zurück zum Zitat Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517CrossRef Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517CrossRef
51.
Zurück zum Zitat Kucheyev SO, Biener J, Wang YM, Baumann TF, Wu KJ, Buuren TV, Hamza AV, Satcher JH (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett, Vol 86(8):083108(1–3) Kucheyev SO, Biener J, Wang YM, Baumann TF, Wu KJ, Buuren TV, Hamza AV, Satcher JH (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett, Vol 86(8):083108(1–3)
52.
Zurück zum Zitat Ritala M, Leskela M (1999) Atomic layer epitaxy-a valuable tool for nanotechnology? Nanotechnology 10(1):19–24CrossRef Ritala M, Leskela M (1999) Atomic layer epitaxy-a valuable tool for nanotechnology? Nanotechnology 10(1):19–24CrossRef
53.
Zurück zum Zitat Lu W, Lieber CM (2006) Semiconductor Nanowires. J Phys D Appl Phys 39(21):R387–R406CrossRef Lu W, Lieber CM (2006) Semiconductor Nanowires. J Phys D Appl Phys 39(21):R387–R406CrossRef
54.
Zurück zum Zitat Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRef Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389CrossRef
55.
Zurück zum Zitat Wolf ED (2004) Nanophysics and nanotechnology: an introduction to modern concepts in nanosciences. Wiley-VCH, Weinheim Wolf ED (2004) Nanophysics and nanotechnology: an introduction to modern concepts in nanosciences. Wiley-VCH, Weinheim
56.
Zurück zum Zitat Shin H, Jeong DK, Lee J, Sung MM, Kim J (2004) Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater 16(14):1197–1200CrossRef Shin H, Jeong DK, Lee J, Sung MM, Kim J (2004) Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater 16(14):1197–1200CrossRef
57.
Zurück zum Zitat Hwang J, Min B, Lee JS, Keem K, Cho K, Sung M-Y, Lee M-S, Kim S (2004) Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell nanofibers. Adv Mater 16(5):422–425CrossRef Hwang J, Min B, Lee JS, Keem K, Cho K, Sung M-Y, Lee M-S, Kim S (2004) Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell nanofibers. Adv Mater 16(5):422–425CrossRef
58.
Zurück zum Zitat Peng Q, Sun XY, Spagnola JC, Hyde GK, Spontak RJ, Parsons GN (2007) Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett 7(3):719–722CrossRef Peng Q, Sun XY, Spagnola JC, Hyde GK, Spontak RJ, Parsons GN (2007) Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett 7(3):719–722CrossRef
59.
Zurück zum Zitat Ras RHA, Kemell M, Wit JD, Ritala M, Brinke GT, Leskela M, Ikkala O (2007) Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates. Adv Mater 19:102–106CrossRef Ras RHA, Kemell M, Wit JD, Ritala M, Brinke GT, Leskela M, Ikkala O (2007) Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates. Adv Mater 19:102–106CrossRef
60.
Zurück zum Zitat Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517CrossRef Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517CrossRef
61.
Zurück zum Zitat Sander MS, Côté MJ, Gu W, Kile BM, Tripp CP (2004) Template-assisted fabrication of dense, aligned arrays of Titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16(22):2052–2057CrossRef Sander MS, Côté MJ, Gu W, Kile BM, Tripp CP (2004) Template-assisted fabrication of dense, aligned arrays of Titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16(22):2052–2057CrossRef
62.
Zurück zum Zitat Gu DF, Baumgart H, Namkoong G, Abdel-Fattah TM (2009) Atomic layer deposition of ZrO2 and HfO2 nanotubes by template replication. Electrochem Solid-State Lett 12(4):K25–K28CrossRef Gu DF, Baumgart H, Namkoong G, Abdel-Fattah TM (2009) Atomic layer deposition of ZrO2 and HfO2 nanotubes by template replication. Electrochem Solid-State Lett 12(4):K25–K28CrossRef
63.
Zurück zum Zitat Kim WH, Park SJ, Son JY, Kim HJ (2008) Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition. Nanotechnology, 19:045302 (8pp) Kim WH, Park SJ, Son JY, Kim HJ (2008) Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition. Nanotechnology, 19:045302 (8pp)
64.
Zurück zum Zitat Elam JW, Xiong G, Han CY, Wang HH, Birrell JP, Welp U, Hryn JN, Pellin MJ, Baumann TF, Poco JF, Satcher JH Jr (2006) Atomic layer deposition for the conformal coating of nanoporous materials. J Nanomaterials (1), p 1–5 (Article ID 64501) Elam JW, Xiong G, Han CY, Wang HH, Birrell JP, Welp U, Hryn JN, Pellin MJ, Baumann TF, Poco JF, Satcher JH Jr (2006) Atomic layer deposition for the conformal coating of nanoporous materials. J Nanomaterials (1), p 1–5 (Article ID 64501)
65.
Zurück zum Zitat Willinger MG, Neri G, Rauwel E, Bonavita A, Micali G, Pinna N (2008) Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. Nano Lett 8(12):4201–4204CrossRef Willinger MG, Neri G, Rauwel E, Bonavita A, Micali G, Pinna N (2008) Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. Nano Lett 8(12):4201–4204CrossRef
66.
Zurück zum Zitat Kim WS, Lee BS, Kim DH, Kim HC, Yu WR, Hong SH (2010) SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 21:245605(1–7) Kim WS, Lee BS, Kim DH, Kim HC, Yu WR, Hong SH (2010) SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology, 21:245605(1–7)
67.
Zurück zum Zitat Bae CD, Yoon YJ, Yoo HJ, Han D, Cho JH, Lee BH, Sung MM, Lee MG, Kim JY, Shin HJ (2009) Controlled fabrication of multiwall anatase TiO2 nanotubular architectures. Chem Mater 21(13):2574–2576CrossRef Bae CD, Yoon YJ, Yoo HJ, Han D, Cho JH, Lee BH, Sung MM, Lee MG, Kim JY, Shin HJ (2009) Controlled fabrication of multiwall anatase TiO2 nanotubular architectures. Chem Mater 21(13):2574–2576CrossRef
68.
Zurück zum Zitat Du X, Du Y, George SM (2008) CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy. J Phys Chem A 112:9211–9219CrossRef Du X, Du Y, George SM (2008) CO gas sensing by ultrathin tin oxide films grown by atomic layer deposition using transmission FTIR spectroscopy. J Phys Chem A 112:9211–9219CrossRef
69.
Zurück zum Zitat Du X, George SM (2008) Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens Actuators B 135:152–160CrossRef Du X, George SM (2008) Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens Actuators B 135:152–160CrossRef
71.
Zurück zum Zitat Niskanena AJ, Varpula A, Utriainen M, Natarajan G, Cameron DC, Novikov S, Airaksinen VM, Sinkkonen J, Franssil S (2010) Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sens Actuators B Chem 148(1):227–232CrossRef Niskanena AJ, Varpula A, Utriainen M, Natarajan G, Cameron DC, Novikov S, Airaksinen VM, Sinkkonen J, Franssil S (2010) Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sens Actuators B Chem 148(1):227–232CrossRef
72.
Zurück zum Zitat Natarajan G, Cameron DC (2009) Influence of oxygen depletion layer on the properties of tin oxide gas-sensing films fabricated by atomic layer deposition. Appl Phys A Mater Sci Process 95(3):621–627CrossRef Natarajan G, Cameron DC (2009) Influence of oxygen depletion layer on the properties of tin oxide gas-sensing films fabricated by atomic layer deposition. Appl Phys A Mater Sci Process 95(3):621–627CrossRef
73.
Zurück zum Zitat Kim DH, Kim WS, Lee SB, Hong SH (2010) Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sens Actuators B 147(2):653–659CrossRef Kim DH, Kim WS, Lee SB, Hong SH (2010) Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sens Actuators B 147(2):653–659CrossRef
74.
Zurück zum Zitat Lee W, Hong K, Park Y, Kim NH, Choi Y, Park J (2005) Surface and sensing properties of PE-ALD SnO2 thin film. Electron Lett 41(8):475–477CrossRef Lee W, Hong K, Park Y, Kim NH, Choi Y, Park J (2005) Surface and sensing properties of PE-ALD SnO2 thin film. Electron Lett 41(8):475–477CrossRef
75.
Zurück zum Zitat Ra YW, Choi KS, Kim JH, Hahn YB, Im HY (2008) Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 4(8):1105–1109CrossRef Ra YW, Choi KS, Kim JH, Hahn YB, Im HY (2008) Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 4(8):1105–1109CrossRef
76.
Zurück zum Zitat Ra H-W, Khan R, Kim JT, Kang BR, Im YH (2009) The effect of grain boundaries inside the individual ZnO nanowires in gas sensing. Nanotechnology 21(8):085502(1–5) Ra H-W, Khan R, Kim JT, Kang BR, Im YH (2009) The effect of grain boundaries inside the individual ZnO nanowires in gas sensing. Nanotechnology 21(8):085502(1–5)
77.
Zurück zum Zitat Aronniemi M, Saino J, Lahtinen J (2008) Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition. Thin Solid Films 516(18):6110–6115CrossRef Aronniemi M, Saino J, Lahtinen J (2008) Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition. Thin Solid Films 516(18):6110–6115CrossRef
78.
Zurück zum Zitat Kolmakov A, Klenov DO, Lilach Y, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letter 5(4):667–673CrossRef Kolmakov A, Klenov DO, Lilach Y, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letter 5(4):667–673CrossRef
79.
Zurück zum Zitat Joshi RK, Kruis FE (2006) Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl Phys Lett 89:153116(1–3) Joshi RK, Kruis FE (2006) Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl Phys Lett 89:153116(1–3)
80.
Zurück zum Zitat Johansson A, Törndahl T, Ottosson LM, Boman M, Carlsson JO (2003) Copper nanoparticles deposited inside the pores of anodized aluminum oxide using atomic layer deposition. J Mater Sci Eng C23(6–8):823–826 Johansson A, Törndahl T, Ottosson LM, Boman M, Carlsson JO (2003) Copper nanoparticles deposited inside the pores of anodized aluminum oxide using atomic layer deposition. J Mater Sci Eng C23(6–8):823–826
81.
Zurück zum Zitat Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754CrossRef Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754CrossRef
82.
Zurück zum Zitat Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC (2009) Catalytic Nanoliths. Chem Eng Sci 64:560–567CrossRef Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC (2009) Catalytic Nanoliths. Chem Eng Sci 64:560–567CrossRef
83.
Zurück zum Zitat Pellin MJ, Stair PC, Xiong G, Elam JW, Birrell J, Curtiss L, George SM, Han CY, Iton L, Kung H, Kung M, Wang HH (2005) Mesoporous catalytic membranes: synthetic control of pore size and wall composition. Catal Lett 102(3–4):127–130CrossRef Pellin MJ, Stair PC, Xiong G, Elam JW, Birrell J, Curtiss L, George SM, Han CY, Iton L, Kung H, Kung M, Wang HH (2005) Mesoporous catalytic membranes: synthetic control of pore size and wall composition. Catal Lett 102(3–4):127–130CrossRef
84.
Zurück zum Zitat Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapo P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–219CrossRef Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapo P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–219CrossRef
Metadaten
Titel
Atomic Layer Deposition for Metal Oxide Nanomaterials
verfasst von
Xiaohua Du
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5395-6_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.