Skip to main content

2021 | OriginalPaper | Buchkapitel

Augmentation of Plasma-Based Impulse Generation with Rapid Chemical Reactions

verfasst von : Brian Thurston, Yu Mao, Troy Lewis, Anupam Vivek, Glenn Daehn

Erschienen in: Forming the Future

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of a chemical explosive mixture to augment the vaporizing foil actuator (VFA) and laser impact welding (LIW) processes is introduced in this study. A liquid explosive known as Picatinny liquid explosive (PLX) was used to augment the capabilities of both the VFA and LIW processes. The 304 stainless steel flyers 3 mm thick driven by PLX augmented VFA and unaugmented VFA are compared. Similarly, 0.442 mm thick Al3003 flyers driven by laser impact and PLX augmented laser impact are compared. In all cases, a photon Doppler velocimetry (PDV) system was used to collect the velocity–time profiles of the flyers. All PLX augmented experiments showed increases in both flyer acceleration and peak velocity over the same time scales as the unaugmented experiments. This indicates that the PLX-provided impulse occurs at the same time as the VFA/laser impulse. The augmented VFA experiments showed a 28% velocity increase over the unaugmented experiments at 10 kJ input energy. The augmented laser impact process exhibited peak flyer velocities 236% higher than laser impact using only the laser. Here we demonstrate that chemical augmentation is capable of significantly increasing flyer velocities for both VFA and LIW at the same input energies and under similar conditions. This development should expand the repertoire of flyer materials and thicknesses that can be impact welded by VFA and LIW.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang Y et al (2011) Application of high velocity impact welding at varied different length scales. J Mater Process Technol 211(5):944–952CrossRef Zhang Y et al (2011) Application of high velocity impact welding at varied different length scales. J Mater Process Technol 211(5):944–952CrossRef
2.
Zurück zum Zitat Groche P, Becker M, Pabst C (2017) Process window acquisition for impact welding processes. Mater Des 118:286–293CrossRef Groche P, Becker M, Pabst C (2017) Process window acquisition for impact welding processes. Mater Des 118:286–293CrossRef
3.
Zurück zum Zitat Grignon F et al (2004) Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int J Impact Eng 30(10):1333–1351CrossRef Grignon F et al (2004) Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int J Impact Eng 30(10):1333–1351CrossRef
5.
Zurück zum Zitat Vivek A et al (2014) Accessing collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214(8):1583–1589CrossRef Vivek A et al (2014) Accessing collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214(8):1583–1589CrossRef
7.
Zurück zum Zitat Lueg-Althoff J, Bellmann J, Hahn M, Schulze S, Gies S, Tekkaya AE, Beyer E (2020) Joining dissimilar thin-walled tubes by magnetic pulse welding. J Mater Process Tech 279 Lueg-Althoff J, Bellmann J, Hahn M, Schulze S, Gies S, Tekkaya AE, Beyer E (2020) Joining dissimilar thin-walled tubes by magnetic pulse welding. J Mater Process Tech 279
8.
Zurück zum Zitat Petel OE, Mack D, Higgins AJ, Turcotte R, Chan SK (2007) Minimum propagation diameter and thickness of high explosives. J Loss Prev Process Ind 20(4):578–583CrossRef Petel OE, Mack D, Higgins AJ, Turcotte R, Chan SK (2007) Minimum propagation diameter and thickness of high explosives. J Loss Prev Process Ind 20(4):578–583CrossRef
9.
Zurück zum Zitat Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Tech 211(5):787–829CrossRef Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Tech 211(5):787–829CrossRef
10.
Zurück zum Zitat Weimar G (1963) Hochgeschwindigkeitsbearbeitung III-Umformung von Blechen und Rohren durch magnetische Krafte. Werkstatt und Betrieb 96(12):893–900 Weimar G (1963) Hochgeschwindigkeitsbearbeitung III-Umformung von Blechen und Rohren durch magnetische Krafte. Werkstatt und Betrieb 96(12):893–900
11.
Zurück zum Zitat Golovashchenko SF (2007) Material formability and coil design in electromagnetic forming. J Mater Eng Perform 16(3):314CrossRef Golovashchenko SF (2007) Material formability and coil design in electromagnetic forming. J Mater Eng Perform 16(3):314CrossRef
12.
Zurück zum Zitat Vivek A et al (2013) Vaporizing foil actuator: a tool for collision welding. J Mater Process Technol 213(12):2304–2311CrossRef Vivek A et al (2013) Vaporizing foil actuator: a tool for collision welding. J Mater Process Technol 213(12):2304–2311CrossRef
13.
Zurück zum Zitat Vivek A, Hansen SR, Daehn GS (2014) High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness. Rev Sci Instrum 85(7):075101CrossRef Vivek A, Hansen SR, Daehn GS (2014) High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness. Rev Sci Instrum 85(7):075101CrossRef
14.
Zurück zum Zitat Grigoriev AN, Pavlenko AV (2009) Pressure generated by the electric explosion of metal foils. Tech Phys Lett 35(9):865–868CrossRef Grigoriev AN, Pavlenko AV (2009) Pressure generated by the electric explosion of metal foils. Tech Phys Lett 35(9):865–868CrossRef
15.
Zurück zum Zitat Lee T et al (2018) Civilized explosive welding: impact welding of thick aluminum to steel plates without explosives. J Manuf Process 36:550–556CrossRef Lee T et al (2018) Civilized explosive welding: impact welding of thick aluminum to steel plates without explosives. J Manuf Process 36:550–556CrossRef
16.
Zurück zum Zitat Hahn M et al (2009) Vaporizing foil actuator welding as a competing technology to magnetic pulse welding. J Mater Process Technol 230:8–20CrossRef Hahn M et al (2009) Vaporizing foil actuator welding as a competing technology to magnetic pulse welding. J Mater Process Technol 230:8–20CrossRef
17.
Zurück zum Zitat Daehn GS, Lippold JC (2009) Low temperature spot impact welding driven without contact. US Patent PCT/US2009/036499. 9 March 2009 Daehn GS, Lippold JC (2009) Low temperature spot impact welding driven without contact. US Patent PCT/US2009/036499. 9 March 2009
18.
Zurück zum Zitat Swift DC, Niemczura JG, Paisley DL, Johnson RP, Luo SN, Tierney TE (2005) Laser-launched flyer plates for shock physics experiments. Rev Sci Instrum 76(9) Swift DC, Niemczura JG, Paisley DL, Johnson RP, Luo SN, Tierney TE (2005) Laser-launched flyer plates for shock physics experiments. Rev Sci Instrum 76(9)
19.
Zurück zum Zitat Wang H, Liu D, Taber G, Lippold JC, Daehn GS (2012) Laser impact welding-process introduction and key variables. ICHSF 2012:255 Wang H, Liu D, Taber G, Lippold JC, Daehn GS (2012) Laser impact welding-process introduction and key variables. ICHSF 2012:255
20.
Zurück zum Zitat Wang H, Taber G, Liu D, Hansen S, Chowdhury E, Terry S, Lippold JC, Daehn GS (2015) Laser impact welding: design of apparatus and parametric optimization. J Manuf Process 19:118–124CrossRef Wang H, Taber G, Liu D, Hansen S, Chowdhury E, Terry S, Lippold JC, Daehn GS (2015) Laser impact welding: design of apparatus and parametric optimization. J Manuf Process 19:118–124CrossRef
21.
Zurück zum Zitat Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E (1997) Waves from a water-confined laser-generated plasma. J Appl Phys 82(6):2826CrossRef Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E (1997) Waves from a water-confined laser-generated plasma. J Appl Phys 82(6):2826CrossRef
23.
Zurück zum Zitat Fast CR (1973) Thickened nitromethane explosive containing encapsulated sensitizer. US Patent 3713915. 30 January 1973 Fast CR (1973) Thickened nitromethane explosive containing encapsulated sensitizer. US Patent 3713915. 30 January 1973
24.
Zurück zum Zitat Kunzel M, Selesovsky J, Pachman J (2017) First attempts in cylinder expansion testing. New Trends Res Energ Mater 736–742 Kunzel M, Selesovsky J, Pachman J (2017) First attempts in cylinder expansion testing. New Trends Res Energ Mater 736–742
25.
Zurück zum Zitat Liu W, Bai C, Liu Q, Yao J, Zhang C (2020) Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics. Combust Flame 221:41–49CrossRef Liu W, Bai C, Liu Q, Yao J, Zhang C (2020) Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics. Combust Flame 221:41–49CrossRef
26.
Zurück zum Zitat Makovky A, Lenji L (1958) Nitromethane physical properties, thermodynamics, kinetics of decomposition, and utilization as fuel. Scientific Department, Ministry of Defence, Tel-Aviv, Israel, pp 627–644 Makovky A, Lenji L (1958) Nitromethane physical properties, thermodynamics, kinetics of decomposition, and utilization as fuel. Scientific Department, Ministry of Defence, Tel-Aviv, Israel, pp 627–644
27.
Zurück zum Zitat Engineering Design Handbook, Explosives series properties of explosives of military interest (1971). U.S. Army Materiel Command, pp 298–301 Engineering Design Handbook, Explosives series properties of explosives of military interest (1971). U.S. Army Materiel Command, pp 298–301
28.
Zurück zum Zitat SIGMA-ALDRICH. Nitromethane material safety data sheet. V0.5 3/19/2014. sigma-aldrich.com SIGMA-ALDRICH. Nitromethane material safety data sheet. V0.5 3/19/2014. sigma-aldrich.com
Metadaten
Titel
Augmentation of Plasma-Based Impulse Generation with Rapid Chemical Reactions
verfasst von
Brian Thurston
Yu Mao
Troy Lewis
Anupam Vivek
Glenn Daehn
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75381-8_110

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.