Skip to main content

2022 | OriginalPaper | Buchkapitel

10. Automated Weather Monitoring Station Based on IoT for Smart Cities

verfasst von : Shaifali M. Arora, Mishti Gautam

Erschienen in: IoT for Sustainable Smart Cities and Society

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In everyday life, weather conditions play a major role. Collection, monitoring, and analysis of data about the different parameters of the weather are necessary to plan various activities in day-to-day life. The weather conditions are required to be monitored for numerous reasons, like the dependency of agriculture, aerial, and marine transport services on the weather; detection of air quality and particulate matter for the health of humans and the environment; to ensure a safe working environment in industries; to predict and forecast climatic phenomena, etc. For ages due to the unavailability of accurate forecast data, due to irregular measurement and analysis of weather conditions, many natural calamities and disasters take place resulting in the loss of millions of lives. Data collected from satellites is for a larger geographical area and not for a pinpointed area at the ground level let us say for a city and therefore in some cases some mismatching of data may occur. If data from the ground level are provided as an added aid to the Meteorological department along with the data collected through various other means to perform analysis there are chances of better prediction and forecasting of natural phenomena. The dissertation is a solution to overcome these limitations.
In today’s world, some major areas of application of a smart, real-time, efficient, low-cost, accurate, low-power, portable, high-speed, Internet of Things (IoT)-based Weather Monitoring station are: Airport operations, Coastal area weather detection, Construction of high rising structures, Agricultural greenhouse, and warehouse condition monitoring, Air Pollution, Solar-based technological industries. Therefore, the need of the hour is to design an Automated Weather Monitoring System which will enable enhanced data collection in real-time for different parameters, such as light intensity, humidity, temperature, air quality, and wind speed without the intervention of humans. This Weather Monitoring Station circuit will be designed to provide an automatic monitoring mechanism to authorities and for the people who pass by the location at which the station is installed. For this purpose, competitive strategy tools and equipment are required to design hardware to fetch the required data and provide it for analysis.
This chapter describes the model designed for this automatic monitoring, and the main component used in this model is Raspberry Pi, which will control all the sensors and upload the real-time data collected using the sensors to a cloud and display the same on an LCD screen/panel installed onsite. The Weather Monitoring Station prototype uses a Light intensity sensor (LDR), Anemometer, Temperature sensor, and Air Quality detection sensor, the continuous analog readings of which will be converted to digital using an ADC IC MCP3208.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, N.-Y., & Chen, S.-M. (2009). Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high- order fuzzy time series. Expert Systems with Applications, 36(2), 2143–2154.CrossRef Wang, N.-Y., & Chen, S.-M. (2009). Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high- order fuzzy time series. Expert Systems with Applications, 36(2), 2143–2154.CrossRef
2.
Zurück zum Zitat Kusmierek-Tomaszewska, R., Zarski, J., & Dudek, S. (2012). Meteorological automated weather station data application for plant water requirements estimation. Computers and Electronics in Agriculture, 88, 44–51.CrossRef Kusmierek-Tomaszewska, R., Zarski, J., & Dudek, S. (2012). Meteorological automated weather station data application for plant water requirements estimation. Computers and Electronics in Agriculture, 88, 44–51.CrossRef
3.
Zurück zum Zitat Abbatea, S., Avvenutia, M., Carturan, L., & Cesarinia, D. (2013). Deploying a communicating Automatic Weather Station on an Alpine glacier. The 3rd international Workshop on Sensor Networks for Intelligence Gathering and Monitoring (SNIGM) Procedia Computer Science, 19, 1190–1195. Abbatea, S., Avvenutia, M., Carturan, L., & Cesarinia, D. (2013). Deploying a communicating Automatic Weather Station on an Alpine glacier. The 3rd international Workshop on Sensor Networks for Intelligence Gathering and Monitoring (SNIGM) Procedia Computer Science, 19, 1190–1195.
4.
Zurück zum Zitat Zanella, S., Member, N., Bui, A., Castellani, L. V., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet of Things, 1(1), 22–32.CrossRef Zanella, S., Member, N., Bui, A., Castellani, L. V., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet of Things, 1(1), 22–32.CrossRef
5.
Zurück zum Zitat Brunelli, D., Minakov, I., Passerone, R., & Rossi, M. (2014). POVOMON: An Ad- hoc Wireless Sensor Network for indoor environmental monitoring. 2014 IEEE Workshop on Environmental Energy and Structural Monitoring Systems Proceedings, 1-6. Brunelli, D., Minakov, I., Passerone, R., & Rossi, M. (2014). POVOMON: An Ad- hoc Wireless Sensor Network for indoor environmental monitoring. 2014 IEEE Workshop on Environmental Energy and Structural Monitoring Systems Proceedings, 1-6.
6.
Zurück zum Zitat Urban, G. (2015). An attemp to assess the results of air temperature measurements from automatic weather stations in comparison to glass thermometer measurements in the context of weather types. Bulletin of Geography Series, 9, 67–79.CrossRef Urban, G. (2015). An attemp to assess the results of air temperature measurements from automatic weather stations in comparison to glass thermometer measurements in the context of weather types. Bulletin of Geography Series, 9, 67–79.CrossRef
8.
Zurück zum Zitat Suksri, S., & Kimpan, W. (2016). Neural network training model for weather forecasting using Fireworks Algorithm. In Proceedings of the 2016 international computer science and engineering conference (ICSEC). Suksri, S., & Kimpan, W. (2016). Neural network training model for weather forecasting using Fireworks Algorithm. In Proceedings of the 2016 international computer science and engineering conference (ICSEC).
9.
Zurück zum Zitat Sushmitha Kothapalli, & S.J. Totad,”A real time weather forecasting and analysis,” pp. 1567-1570, 2017. Sushmitha Kothapalli, & S.J. Totad,”A real time weather forecasting and analysis,” pp. 1567-1570, 2017.
10.
Zurück zum Zitat Munandar, A., Fakhrurroja, H., Rizqyawan, M. I., & Ratama, R. P. (2017). Design of weather monitoring system based on mobile application sing automatic weather station. IEEE Transaction, 44–46. Munandar, A., Fakhrurroja, H., Rizqyawan, M. I., & Ratama, R. P. (2017). Design of weather monitoring system based on mobile application sing automatic weather station. IEEE Transaction, 44–46.
11.
Zurück zum Zitat Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities. Cities, 60, 234–245.CrossRef Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities. Cities, 60, 234–245.CrossRef
12.
Zurück zum Zitat Dolara, A., Gandelli, A., Grimaccia, F., Leva, S., & Mussetta, M. (2017). Weather-based Machine Learning technique for Day-Ahead Wind power forecasting. IEEE, 207–208. Dolara, A., Gandelli, A., Grimaccia, F., Leva, S., & Mussetta, M. (2017). Weather-based Machine Learning technique for Day-Ahead Wind power forecasting. IEEE, 207–208.
13.
Zurück zum Zitat Khan, M. S., Woo, M., Nam, K., & Chathoth, P. K. (2017). Smart city and smart tourism: A case of Dubai. Sustainability, 9, 2279.CrossRef Khan, M. S., Woo, M., Nam, K., & Chathoth, P. K. (2017). Smart city and smart tourism: A case of Dubai. Sustainability, 9, 2279.CrossRef
14.
Zurück zum Zitat Singh, R., et al. (2018). An imperative role of sun trackers in photovoltaic technology: A review. Renewable and Sustainable Energy Reviews, 82, 3263–3278.CrossRef Singh, R., et al. (2018). An imperative role of sun trackers in photovoltaic technology: A review. Renewable and Sustainable Energy Reviews, 82, 3263–3278.CrossRef
15.
Zurück zum Zitat Cowie, J., Linden, S., Mccandless, T., Kosovic, B., & Alessandrini, S. (2018). Machine learning for Applied Weather Prediction. IEEE, 276–277. Cowie, J., Linden, S., Mccandless, T., Kosovic, B., & Alessandrini, S. (2018). Machine learning for Applied Weather Prediction. IEEE, 276–277.
17.
Zurück zum Zitat Nsabagwa, M., Mugume, I., Kasumba, R., & Muhumu, J. (2018). Condition monitoring and reporting framework for wireless network-based automatic weather stations”, pp. 1, 8 Nsabagwa, M., Mugume, I., Kasumba, R., & Muhumu, J. (2018). Condition monitoring and reporting framework for wireless network-based automatic weather stations”, pp. 1, 8
18.
Zurück zum Zitat Kiani, F., & Seyyedabbasi, A. (2018). Wireless sensor network and internet of things in precision agriculture. International Journal of Advanced Computer Science and Applications, 9(6), 99–103.CrossRef Kiani, F., & Seyyedabbasi, A. (2018). Wireless sensor network and internet of things in precision agriculture. International Journal of Advanced Computer Science and Applications, 9(6), 99–103.CrossRef
19.
Zurück zum Zitat Srinivasan, K., Nema, A., Huang, C., & Ho, T. Y. (2018). Weather forecasting application using web-based-model-view-whatever framework. IEEE, 1–2. Srinivasan, K., Nema, A., Huang, C., & Ho, T. Y. (2018). Weather forecasting application using web-based-model-view-whatever framework. IEEE, 1–2.
20.
Zurück zum Zitat Hasan, M., Anik, M. H., & Islam, S. (2018). Microcontroller based smart home system with enhanced appliance switching capacity. 2018 Fifth HCT Information Technology Trends (ITT), 364–367. Hasan, M., Anik, M. H., & Islam, S. (2018). Microcontroller based smart home system with enhanced appliance switching capacity. 2018 Fifth HCT Information Technology Trends (ITT), 364–367.
21.
Zurück zum Zitat Ahmad, N., Uday, T. I. R., Islam, M. T., Patoary, R., Billah, M. M., Ahmed, N., & Tithi, F. S. (2019). Portable mini-weather station for agricultural sector of rural area in Bangladesh. Algorithms Intell Syst. Ahmad, N., Uday, T. I. R., Islam, M. T., Patoary, R., Billah, M. M., Ahmed, N., & Tithi, F. S. (2019). Portable mini-weather station for agricultural sector of rural area in Bangladesh. Algorithms Intell Syst.
22.
Zurück zum Zitat Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., Azkune, G., & Almeida, A. (2019). Smart cities survey: Technologies, application domains and challenges for the cities of the future. International Journal of Distributed Sensor Networks, 15. Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., Azkune, G., & Almeida, A. (2019). Smart cities survey: Technologies, application domains and challenges for the cities of the future. International Journal of Distributed Sensor Networks, 15.
23.
Zurück zum Zitat Singh, N., Chaturvedi, S., & Akhter, S. (2019). Weather forecasting using Machine Learning Algorithm. In Proceedings of the 2019 international conference on signal processing and communication (ICSC). Singh, N., Chaturvedi, S., & Akhter, S. (2019). Weather forecasting using Machine Learning Algorithm. In Proceedings of the 2019 international conference on signal processing and communication (ICSC).
24.
Zurück zum Zitat Parashar, A. (2019) IoT based automated weather report generation and prediction using machine learning. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, pp. 339–344 Parashar, A. (2019) IoT based automated weather report generation and prediction using machine learning. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, pp. 339–344
25.
Zurück zum Zitat Javidroozi, V., Shah, H., & Feldman, G. (2019). Urban computing and smart cities: Towards changing city processes by applying enterprise systems integration practices. IEEE Access, 7, 108023–108034.CrossRef Javidroozi, V., Shah, H., & Feldman, G. (2019). Urban computing and smart cities: Towards changing city processes by applying enterprise systems integration practices. IEEE Access, 7, 108023–108034.CrossRef
26.
Zurück zum Zitat Chaganti, S. Y., Nanda, I., & Pandi, K. R. (2020). Cloud-based weather monitoring system. In Advances in data science and management (pp. 235–245). Springer.CrossRef Chaganti, S. Y., Nanda, I., & Pandi, K. R. (2020). Cloud-based weather monitoring system. In Advances in data science and management (pp. 235–245). Springer.CrossRef
27.
Zurück zum Zitat Kumari, N., Gosavi, S., & Nagre, S. S. (2020). Real-time cloud based weather monitoring system. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE. Kumari, N., Gosavi, S., & Nagre, S. S. (2020). Real-time cloud based weather monitoring system. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE.
28.
Zurück zum Zitat Kavin, R., Lakshmi, K., Rani, S. S., & Rameshkumar, K. (2020). Weather monitoring system using internet of things. In Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS). Kavin, R., Lakshmi, K., Rani, S. S., & Rameshkumar, K. (2020). Weather monitoring system using internet of things. In Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS).
29.
Zurück zum Zitat Lakhara, V., Kurade, P., Pawar, T., Chougule, A., & Asurlekar, M. (2021). Real time weather monitoring system implementation based on Internet of Things. Available at SSRN, 3866819. Lakhara, V., Kurade, P., Pawar, T., Chougule, A., & Asurlekar, M. (2021). Real time weather monitoring system implementation based on Internet of Things. Available at SSRN, 3866819.
30.
Zurück zum Zitat Ashwitha, A., & Latha, C. A. (2021). Smart weather acquisition, analysis and alert system. Annals of the Romanian Society for Cell Biology, 25(6), 11289–11298. Ashwitha, A., & Latha, C. A. (2021). Smart weather acquisition, analysis and alert system. Annals of the Romanian Society for Cell Biology, 25(6), 11289–11298.
31.
Zurück zum Zitat Sangjan, W., et al. (2021). Development of a raspberry pi-based sensor system for automated in-field monitoring to support crop breeding programs. Inventions, 6(2), 42.CrossRef Sangjan, W., et al. (2021). Development of a raspberry pi-based sensor system for automated in-field monitoring to support crop breeding programs. Inventions, 6(2), 42.CrossRef
32.
Zurück zum Zitat Narasimha Rao, Y., et al. (2020). Providing enhanced security in IoT based smart weather system. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 9–15.CrossRef Narasimha Rao, Y., et al. (2020). Providing enhanced security in IoT based smart weather system. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 9–15.CrossRef
33.
Zurück zum Zitat Khandelwal, D. D., & Singhal, M. (2021). Developing a low-cost weather monitoring system for data-sparse regions of the Himalayas. Weather, 76(2), 60–64.CrossRef Khandelwal, D. D., & Singhal, M. (2021). Developing a low-cost weather monitoring system for data-sparse regions of the Himalayas. Weather, 76(2), 60–64.CrossRef
34.
Zurück zum Zitat Pi, Raspberry. (2015). Raspberry pi 3 model b. [Online]. https://www.raspberrypi.org Pi, Raspberry. (2015). Raspberry pi 3 model b. [Online]. https://​www.​raspberrypi.​org
Metadaten
Titel
Automated Weather Monitoring Station Based on IoT for Smart Cities
verfasst von
Shaifali M. Arora
Mishti Gautam
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89554-9_10

Neuer Inhalt